Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Study on Interaction of Histamine, Tyramine and Phenethylamine with Bovine Serum Albumin Using Isothermal Titration Calorimetry
Asian Journal of Chemistry,
Vol. 28 No. 10 (2016): Vol 28 Issue 10
Abstract
The interaction between histamine, tyramine or phenethylamine and bovine serum albumin (BSA) were investigated by nano-Watt-scale isothermal titration calorimetry (ITC). From the analysis of the isothermal titration calorimetry data, the binding characteristics and thermodynamic properties of three systems were obtained and the binding mechanisms were discussed. It was found that the experimental data fit well with the Langmuir’s binding theory. Bovine serum albumin has two classes of binding sites binding to histamine or tyramine. In histamine-BSA system, high affinity does not occur spontaneously. Low affinity binding is an enthalpy-entropy driven collaborative process in which enthalpy-driven was dominant. The low affinity binding is dominant, the reaction can proceed spontaneously. In tyramine-BSA system, the two classes of binding model act synergistically and formed stable tyramine-BSA complex. The reaction can proceed spontaneously. Differ from the two systems, phenethylamine (PEA) binding to bovine serum albumin by a single site or high affinity mode and form stable PEA-BSA complex. The reaction can also proceed spontaneously.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C.G. Cai, H. Zhang, Z.M. Wang, J.C. Jin and J.Z. Jin, Food R&D, 30, 153 (2009).
- Z.J. Li, Y.N. Wu and C.H. Xue, Food Fermen. Ind., 30, 84 (2004).
- M. Martuscelli, G. Arfelli, A.C. Manetta and G. Suzzi, Food Chem., 140, 590 (2013); doi:10.1016/j.foodchem.2013.01.008.
- C. Palermo, M. Muscarella, D. Nardiello, M. Iammarino and D. Centonze, Anal. Bioanal. Chem., 405, 1015 (2013); doi:10.1007/s00216-012-6439-z.
- F. Bedia-Erim, Trends Analyt. Chem., 52, 239 (2013); doi:10.1016/j.trac.2013.05.018.
- Y. Wang, F. Qiu, B.Z. Han and L.J.Yin, China Brewing, 1 (2011).
- J.Y. Hong, N.H. Park, M.S. Oh, H.S. Lee, H. Pyo and J. Hong, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 940, 94 (2013); doi:10.1016/j.jchromb.2013.09.026.
- X.X. Song, S. Shao, Q.F. Lei, W.J. Fang and R.S. Lin, J. Zhejiang Univ., 36, 175 (2009).
- Y. Huan, D.Y. Chu, Y. Tang and W. Cao, Acta Phys. Chim. Sin., 16, 764 (2010).
- X. Feng, D. Yan, Y. Yan, Y.S. Ren, P. Zhang, Y.M. Han, K.J. Zhao and X.H. Xiao, Acta Pharmacol. Sin., 46, 322 (2011).
- Q. Zhang, L. Li and Y. Liu, Acta Chim. Sin., 62, 514 (2004).
- J. Xiang, Y. Liang and N. Chen, Acta Chim. Sin., 66, 1949 (2008).
- U. Kragh-Hansen, V.T.G. Chuang and M. Otagiri, Biol. Pharm., 25, 695 (2002); doi:10.1248/bpb.25.695.
- G.R. Haynes, R.J. Navickis and M.M. Wilkes, Eur. J. Anaesthesiol., 20, 771 (2003); doi:10.1097/00003643-200310000-00003.
- D.E. Wilcox, Inorg. Chim. Acta, 361, 857 (2008); doi:10.1016/j.ica.2007.10.032.
- G.R. Behbehani, A.A. Saboury, M. Mohebbian and S. Ghammamy, Chin. Chem. Lett., 21, 457 (2010); doi:10.1016/j.cclet.2009.10.021.
- M. Guo, W.J. Lu, P.G. Yi and Q.S. Yu, J. Chem. Thermodyn., 39, 337 (2007); doi:10.1016/j.jct.2006.08.006.
- S. Nakamura, S. Koga, N. Shibuya, K. Seo and S. Kidokoro, Thermochim. Acta, 563, 82 (2013); doi:10.1016/j.tca.2013.04.008.
- L. Zhang, X.G. Hu, G.Y. Fang, Guangdong Chem. Ind., 38, 22 (2011).
- L.N. Lin, A.B. Mason, R.C. Woodworth and J.F. Brandts, Biochemistry, 30, 11660 (1991); doi:10.1021/bi00114a008.
- T. Wiseman, S. Williston, J.F. Brandts and L.-N. Lin, Anal. Biochem., 179, 131 (1989); doi:10.1016/0003-2697(89)90213-3.
- A.D. Nielsen, K. Borch and P. Westh, Biochim. Biophys. Acta, 1479, 321 (2000); doi:10.1016/S0167-4838(00)00012-1.
- E.L. Tang, S.H. Xiang, M. Yang and L. Li, Plasma Sci. Technol., 14, 747 (2012); doi:10.1088/1009-0630/14/8/12.
- P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981); doi:10.1021/bi00514a017.
- X.Y. Xu, X.J. Sun, M. Liu, D.Z. Sun and L.W. Li, Acta Chim. Sin., 67, 2155 (2009).
References
C.G. Cai, H. Zhang, Z.M. Wang, J.C. Jin and J.Z. Jin, Food R&D, 30, 153 (2009).
Z.J. Li, Y.N. Wu and C.H. Xue, Food Fermen. Ind., 30, 84 (2004).
M. Martuscelli, G. Arfelli, A.C. Manetta and G. Suzzi, Food Chem., 140, 590 (2013); doi:10.1016/j.foodchem.2013.01.008.
C. Palermo, M. Muscarella, D. Nardiello, M. Iammarino and D. Centonze, Anal. Bioanal. Chem., 405, 1015 (2013); doi:10.1007/s00216-012-6439-z.
F. Bedia-Erim, Trends Analyt. Chem., 52, 239 (2013); doi:10.1016/j.trac.2013.05.018.
Y. Wang, F. Qiu, B.Z. Han and L.J.Yin, China Brewing, 1 (2011).
J.Y. Hong, N.H. Park, M.S. Oh, H.S. Lee, H. Pyo and J. Hong, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 940, 94 (2013); doi:10.1016/j.jchromb.2013.09.026.
X.X. Song, S. Shao, Q.F. Lei, W.J. Fang and R.S. Lin, J. Zhejiang Univ., 36, 175 (2009).
Y. Huan, D.Y. Chu, Y. Tang and W. Cao, Acta Phys. Chim. Sin., 16, 764 (2010).
X. Feng, D. Yan, Y. Yan, Y.S. Ren, P. Zhang, Y.M. Han, K.J. Zhao and X.H. Xiao, Acta Pharmacol. Sin., 46, 322 (2011).
Q. Zhang, L. Li and Y. Liu, Acta Chim. Sin., 62, 514 (2004).
J. Xiang, Y. Liang and N. Chen, Acta Chim. Sin., 66, 1949 (2008).
U. Kragh-Hansen, V.T.G. Chuang and M. Otagiri, Biol. Pharm., 25, 695 (2002); doi:10.1248/bpb.25.695.
G.R. Haynes, R.J. Navickis and M.M. Wilkes, Eur. J. Anaesthesiol., 20, 771 (2003); doi:10.1097/00003643-200310000-00003.
D.E. Wilcox, Inorg. Chim. Acta, 361, 857 (2008); doi:10.1016/j.ica.2007.10.032.
G.R. Behbehani, A.A. Saboury, M. Mohebbian and S. Ghammamy, Chin. Chem. Lett., 21, 457 (2010); doi:10.1016/j.cclet.2009.10.021.
M. Guo, W.J. Lu, P.G. Yi and Q.S. Yu, J. Chem. Thermodyn., 39, 337 (2007); doi:10.1016/j.jct.2006.08.006.
S. Nakamura, S. Koga, N. Shibuya, K. Seo and S. Kidokoro, Thermochim. Acta, 563, 82 (2013); doi:10.1016/j.tca.2013.04.008.
L. Zhang, X.G. Hu, G.Y. Fang, Guangdong Chem. Ind., 38, 22 (2011).
L.N. Lin, A.B. Mason, R.C. Woodworth and J.F. Brandts, Biochemistry, 30, 11660 (1991); doi:10.1021/bi00114a008.
T. Wiseman, S. Williston, J.F. Brandts and L.-N. Lin, Anal. Biochem., 179, 131 (1989); doi:10.1016/0003-2697(89)90213-3.
A.D. Nielsen, K. Borch and P. Westh, Biochim. Biophys. Acta, 1479, 321 (2000); doi:10.1016/S0167-4838(00)00012-1.
E.L. Tang, S.H. Xiang, M. Yang and L. Li, Plasma Sci. Technol., 14, 747 (2012); doi:10.1088/1009-0630/14/8/12.
P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981); doi:10.1021/bi00514a017.
X.Y. Xu, X.J. Sun, M. Liu, D.Z. Sun and L.W. Li, Acta Chim. Sin., 67, 2155 (2009).