This work is licensed under a Creative Commons Attribution 4.0 International License.
Comparison of Porous Carbon Electrodes Derived from Madhuca longifolia Leaves by Hydrothermal Technique and Direct Pyrolysis Techniques
Corresponding Author(s) : M. Shanmuga Priya
Asian Journal of Chemistry,
Vol. 35 No. 4 (2023): Vol 35 Issue 4, 2023
Abstract
In present study, porous conducting functional carbon material was prepared from Madhuca longifolia leaves by hydrothermal and direct pyrolysis techniques. Further, the prepared carbon materials from different techniques were activated to enhance their physico-chemical, morphological and electrochemical properties. The synthesized conductive carbon materials were characterized by X-ray diffraction studies, energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), field emission scanning electron microscopy (FESEM) and transmission electron microscope (TEM) techniques. To evaluate the electrochemical performance of the prepared carbon material, cyclic voltammetry and galvanostatic charge-discharge studies were carried out in 1 M H2SO4 aqueous electrolyte in a three-electrode system. Compared to carbon material synthesized via the hydrothermal process (82.85 F/g), the capacitance of 173.75 F/g found in the Madhuca longifolia biowaste precursor obtained via direct pyrolysis is quite satisfactory. Thus, Madhuca longifolia derived functional carbon can be used as green, low-cost electrode materials for supercapacitors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Zhou and Y. Wang, Sci. Technol. Adv. Mater., 21, 787 (2020); https://doi.org/10.1080/14686996.2020.1848213
- D.S. Priya, L.J. Kennedy and G.T. Anand, Mater. Today Sustain., 21, 100320 (2023); https://doi.org/10.1016/j.mtsust.2023.100320
- A.G. Olabi, Q. Abbas, A. Al-Makky and M.A. Abdelkareem, Energy, 248, 123617 (2022); https://doi.org/10.1016/j.energy.2022.123617
- B. Hu, K. Wang, L. Wu, S. H. Yu, M. Antonietti, and M.M. Titirici, Adv. Mater., 22, 813 (2010); https://doi.org/10.1002/adma.200902812
- P. Purohit and V. Chaturvedi, Environ. Sci. Pollut. Res., 25, 29614 (2018); https://doi.org/10.1007/s11356-018-2960-8
- M.S. Priya, P. Divya and R. Rajalakshmi, Sustain. Chem. Pharm., 16, 100243 (2020); https://doi.org/10.1016/j.scp.2020.100243
- P. Divya, A. Prithiba, and R. Rajalakshmi, IOP Conf. Ser. Mater. Sci. Eng., 561, 012078 (2019); https://doi.org/10.1088/1757-899X/561/1/012078
- A. Jain, M. Ghosh, M. Krajewski, S. Kurungot and M. Michalska, J. Energy Storage, 34, 102178 (2021); https://doi.org/10.1016/j.est.2020.102178
- X. Luo, S. Li, H. Xu, X. Zou, Y. Wang, J. Cheng, X. Li, Z. Shen, Y. Wang and L. Cui, J. Colloid Interface Sci., 582, 940 (2021); https://doi.org/10.1016/j.jcis.2020.08.088
- Y. Ma, J. Tian, L. Li, L. Kong, S. Liu, K. Guo and X. Chen, Int. J. Energy Res., 45, 9058 (2021); https://doi.org/10.1002/er.6437
- C. Xiong, B. Li, C. Duan, L. Dai, S. Nie, C. Qin, Y. Xu and Y. Ni, Chem. Eng. J., 418, 129518 (2021); https://doi.org/10.1016/j.cej.2021.129518
- S.T. Senthilkumar and R.K. Selvan, ChemElectroChem, 2, 1111 (2015); https://doi.org/10.1002/celc.201500090
- S. Ghosh, R. Santhosh, S. Jeniffer, V. Raghavan, G. Jacob, K. Nanaji, P. Kollu, S.K. Jeong and A.N. Grace, Sci. Rep., 9, 16315 (2019); https://doi.org/10.1038/s41598-019-52006-x
- A. Ariharan, K. Ramesh, R. Vinayagamoorthi, B. Viswanathan, M.S. Rani, S. Ramaprabhu and V. Nandhakumar, J. Energy Storage, 35, 102185 (2021); https://doi.org/10.1016/j.est.2020.102185
- J. Liu, S. Min, F. Wang and Z. Zhang, J. Power Sources, 466, 228347 (2020); https://doi.org/10.1016/j.jpowsour.2020.228347
- C. Quan, R. Su and N. Gao, Int. J. Energy Res., 44, 4335 (2020); https://doi.org/10.1002/er.5206
- Q. Wang, Q. Cao, X. Wang, B. Jing, H. Kuang and L. Zhou, J. Power Sources, 225, 101 (2013); https://doi.org/10.1016/j.jpowsour.2012.10.022
- Y. Cheng, L. Wu, C. Fang, T. Li, J. Chen, M. Yang and Q. Zhang, J. Mater. Res. Technol., 9, 3261 (2020); https://doi.org/10.1016/j.jmrt.2020.01.022
- G. Zhang, Y. Chen, Y. Chen, and H. Guo, Mater. Res. Bull., 102, 391 (2018); https://doi.org/10.1016/j.materresbull.2018.03.006
- A. Bello, N. Manyala, F. Barzegar, A. A. Khaleed, D. Y. Momodu and J. K. Dangbegnon, RSC Adv., 6, 1800 (2016); https://doi.org/10.1039/c5ra21708c
- D. Xu, Y. Su, S. Zhang and Y. Xiong, Energy Sources Part A, 42, 1797 (2020); https://doi.org/10.1080/15567036.2019.1604890
- J. Zhang, H. Chen, J. Bai, M. Xu, C. Luo, L. Yang, L. Bai, D. Wei, W. Wang and H. Yang, J. Alloys Compd., 854, 157207 (2021); https://doi.org/10.1016/j.jallcom.2020.157207
- D. Momodu, M. Madito, F. Barzegar, A. Bello, A. Khaleed, O. Olaniyan, J. Dangbegnon and N. Manyala, J. Solid State Electrochem., 21, 859 (2017); https://doi.org/10.1007/s10008-016-3432-z
- N. Guo, M. Li, X. Sun, F. Wang and R. Yang, Mater. Chem. Phys., 201, 399 (2017); https://doi.org/10.1016/j.matchemphys.2017.08.054
- V. Bisht, Neeraj, V. K. Solanki and N. Dalal, J. Pharmacogn. Phytochem., 7, 3414 (2018).
- M. Sevilla and A.B. Fuertes, Carbon, 47, 2281 (2009); https://doi.org/10.1016/j.carbon.2009.04.026
- P. Divya and R. Rajalakshmi, J. Energy Storage, 27, 1010149 (2020); https://doi.org/10.1016/j.est.2019.101149
- M. Karnan, K. Subramani, N. Sudhan, N. Ilayaraja and M. Sathish, ACS Appl. Mater. Interfaces, 8, 35191 (2016); https://doi.org/10.1021/acsami.6b10704
- Z. Husain, A.R. Shakeelur Raheman, K.B. Ansari, A.B. Pandit, M.S. Khan, M.A. Qyyum and S.S. Lam, Mater. Sci. Energy Technol., 5, 99 (2022); https://doi.org/10.1016/j.mset.2021.12.003
- Y. Zhao, M. Liu, X. Deng, L. Miao, P.K. Tripathi, X. Ma, D. Zhu, Z. Xu, Z. Hao and L. Gan, Electrochim. Acta, 153, 448 (2015); https://doi.org/10.1016/j.electacta.2014.11.173
- X. Ma, H. Wang, Q. Wu, J. Zhang, D. Liang, S. Lu and Y. Xiang, J. Electrochem. Soc., 166, A236 (2019); https://doi.org/10.1149/2.0831902jes
- N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja and M. Sathish, Energy Fuels, 31, 977 (2017); https://doi.org/10.1021/acs.energyfuels.6b01829
- N. Shimodaira and A. Masui, J. Appl. Phys., 92, 902 (2002); https://doi.org/10.1063/1.1487434
- S. Yang, S. Wang, X. Liu, and L. Li, Carbon, 147, 549 (2019); https://doi.org/10.1016/j.carbon.2019.03.023
- M. Yang, D.S. Kim, S.B. Hong, J.-W. Sim, J. Kim, S.-S. Kim and B.G. Choi, Langmuir, 33, 5140 (2017); https://doi.org/10.1021/acs.langmuir.7b00589
- F. Wu, R. Tseng, C. Hu, and C. Wang, J. Power Sources, 144, 302 (2005); https://doi.org/10.1016/j.jpowsour.2004.12.020
- V. Subramanian, C. Luo, A. M. Stephan, K. S. Nahm, S. Thomas and B. Wei, J. Phys. Chem. C, 111, 7527 (2007); https://doi.org/10.1021/jp067009t
- D. Kalpana, S.H. Cho, S.B. Lee, Y.S. Lee, R. Misra and N.G. Renganathan, J. Power Sources, 190, 587 (2009); https://doi.org/10.1016/j.jpowsour.2009.01.058
- E. Raymundo-Piñero, F. Leroux and F. Béguin, Adv. Mater., 18, 1877 (2006); https://doi.org/10.1002/adma.200501905
- Y. Guo, J. Qi, Y. Jiang, S. Yang, Z. Wang and H. Xu, Mater. Chem. Phys., 80, 704 (2003); https://doi.org/10.1016/S0254-0584(03)00105-6
- T.E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu and G.Q. Lu, J. Power Sources, 195, 912 (2010); https://doi.org/10.1016/j.jpowsour.2009.08.048
References
C. Zhou and Y. Wang, Sci. Technol. Adv. Mater., 21, 787 (2020); https://doi.org/10.1080/14686996.2020.1848213
D.S. Priya, L.J. Kennedy and G.T. Anand, Mater. Today Sustain., 21, 100320 (2023); https://doi.org/10.1016/j.mtsust.2023.100320
A.G. Olabi, Q. Abbas, A. Al-Makky and M.A. Abdelkareem, Energy, 248, 123617 (2022); https://doi.org/10.1016/j.energy.2022.123617
B. Hu, K. Wang, L. Wu, S. H. Yu, M. Antonietti, and M.M. Titirici, Adv. Mater., 22, 813 (2010); https://doi.org/10.1002/adma.200902812
P. Purohit and V. Chaturvedi, Environ. Sci. Pollut. Res., 25, 29614 (2018); https://doi.org/10.1007/s11356-018-2960-8
M.S. Priya, P. Divya and R. Rajalakshmi, Sustain. Chem. Pharm., 16, 100243 (2020); https://doi.org/10.1016/j.scp.2020.100243
P. Divya, A. Prithiba, and R. Rajalakshmi, IOP Conf. Ser. Mater. Sci. Eng., 561, 012078 (2019); https://doi.org/10.1088/1757-899X/561/1/012078
A. Jain, M. Ghosh, M. Krajewski, S. Kurungot and M. Michalska, J. Energy Storage, 34, 102178 (2021); https://doi.org/10.1016/j.est.2020.102178
X. Luo, S. Li, H. Xu, X. Zou, Y. Wang, J. Cheng, X. Li, Z. Shen, Y. Wang and L. Cui, J. Colloid Interface Sci., 582, 940 (2021); https://doi.org/10.1016/j.jcis.2020.08.088
Y. Ma, J. Tian, L. Li, L. Kong, S. Liu, K. Guo and X. Chen, Int. J. Energy Res., 45, 9058 (2021); https://doi.org/10.1002/er.6437
C. Xiong, B. Li, C. Duan, L. Dai, S. Nie, C. Qin, Y. Xu and Y. Ni, Chem. Eng. J., 418, 129518 (2021); https://doi.org/10.1016/j.cej.2021.129518
S.T. Senthilkumar and R.K. Selvan, ChemElectroChem, 2, 1111 (2015); https://doi.org/10.1002/celc.201500090
S. Ghosh, R. Santhosh, S. Jeniffer, V. Raghavan, G. Jacob, K. Nanaji, P. Kollu, S.K. Jeong and A.N. Grace, Sci. Rep., 9, 16315 (2019); https://doi.org/10.1038/s41598-019-52006-x
A. Ariharan, K. Ramesh, R. Vinayagamoorthi, B. Viswanathan, M.S. Rani, S. Ramaprabhu and V. Nandhakumar, J. Energy Storage, 35, 102185 (2021); https://doi.org/10.1016/j.est.2020.102185
J. Liu, S. Min, F. Wang and Z. Zhang, J. Power Sources, 466, 228347 (2020); https://doi.org/10.1016/j.jpowsour.2020.228347
C. Quan, R. Su and N. Gao, Int. J. Energy Res., 44, 4335 (2020); https://doi.org/10.1002/er.5206
Q. Wang, Q. Cao, X. Wang, B. Jing, H. Kuang and L. Zhou, J. Power Sources, 225, 101 (2013); https://doi.org/10.1016/j.jpowsour.2012.10.022
Y. Cheng, L. Wu, C. Fang, T. Li, J. Chen, M. Yang and Q. Zhang, J. Mater. Res. Technol., 9, 3261 (2020); https://doi.org/10.1016/j.jmrt.2020.01.022
G. Zhang, Y. Chen, Y. Chen, and H. Guo, Mater. Res. Bull., 102, 391 (2018); https://doi.org/10.1016/j.materresbull.2018.03.006
A. Bello, N. Manyala, F. Barzegar, A. A. Khaleed, D. Y. Momodu and J. K. Dangbegnon, RSC Adv., 6, 1800 (2016); https://doi.org/10.1039/c5ra21708c
D. Xu, Y. Su, S. Zhang and Y. Xiong, Energy Sources Part A, 42, 1797 (2020); https://doi.org/10.1080/15567036.2019.1604890
J. Zhang, H. Chen, J. Bai, M. Xu, C. Luo, L. Yang, L. Bai, D. Wei, W. Wang and H. Yang, J. Alloys Compd., 854, 157207 (2021); https://doi.org/10.1016/j.jallcom.2020.157207
D. Momodu, M. Madito, F. Barzegar, A. Bello, A. Khaleed, O. Olaniyan, J. Dangbegnon and N. Manyala, J. Solid State Electrochem., 21, 859 (2017); https://doi.org/10.1007/s10008-016-3432-z
N. Guo, M. Li, X. Sun, F. Wang and R. Yang, Mater. Chem. Phys., 201, 399 (2017); https://doi.org/10.1016/j.matchemphys.2017.08.054
V. Bisht, Neeraj, V. K. Solanki and N. Dalal, J. Pharmacogn. Phytochem., 7, 3414 (2018).
M. Sevilla and A.B. Fuertes, Carbon, 47, 2281 (2009); https://doi.org/10.1016/j.carbon.2009.04.026
P. Divya and R. Rajalakshmi, J. Energy Storage, 27, 1010149 (2020); https://doi.org/10.1016/j.est.2019.101149
M. Karnan, K. Subramani, N. Sudhan, N. Ilayaraja and M. Sathish, ACS Appl. Mater. Interfaces, 8, 35191 (2016); https://doi.org/10.1021/acsami.6b10704
Z. Husain, A.R. Shakeelur Raheman, K.B. Ansari, A.B. Pandit, M.S. Khan, M.A. Qyyum and S.S. Lam, Mater. Sci. Energy Technol., 5, 99 (2022); https://doi.org/10.1016/j.mset.2021.12.003
Y. Zhao, M. Liu, X. Deng, L. Miao, P.K. Tripathi, X. Ma, D. Zhu, Z. Xu, Z. Hao and L. Gan, Electrochim. Acta, 153, 448 (2015); https://doi.org/10.1016/j.electacta.2014.11.173
X. Ma, H. Wang, Q. Wu, J. Zhang, D. Liang, S. Lu and Y. Xiang, J. Electrochem. Soc., 166, A236 (2019); https://doi.org/10.1149/2.0831902jes
N. Sudhan, K. Subramani, M. Karnan, N. Ilayaraja and M. Sathish, Energy Fuels, 31, 977 (2017); https://doi.org/10.1021/acs.energyfuels.6b01829
N. Shimodaira and A. Masui, J. Appl. Phys., 92, 902 (2002); https://doi.org/10.1063/1.1487434
S. Yang, S. Wang, X. Liu, and L. Li, Carbon, 147, 549 (2019); https://doi.org/10.1016/j.carbon.2019.03.023
M. Yang, D.S. Kim, S.B. Hong, J.-W. Sim, J. Kim, S.-S. Kim and B.G. Choi, Langmuir, 33, 5140 (2017); https://doi.org/10.1021/acs.langmuir.7b00589
F. Wu, R. Tseng, C. Hu, and C. Wang, J. Power Sources, 144, 302 (2005); https://doi.org/10.1016/j.jpowsour.2004.12.020
V. Subramanian, C. Luo, A. M. Stephan, K. S. Nahm, S. Thomas and B. Wei, J. Phys. Chem. C, 111, 7527 (2007); https://doi.org/10.1021/jp067009t
D. Kalpana, S.H. Cho, S.B. Lee, Y.S. Lee, R. Misra and N.G. Renganathan, J. Power Sources, 190, 587 (2009); https://doi.org/10.1016/j.jpowsour.2009.01.058
E. Raymundo-Piñero, F. Leroux and F. Béguin, Adv. Mater., 18, 1877 (2006); https://doi.org/10.1002/adma.200501905
Y. Guo, J. Qi, Y. Jiang, S. Yang, Z. Wang and H. Xu, Mater. Chem. Phys., 80, 704 (2003); https://doi.org/10.1016/S0254-0584(03)00105-6
T.E. Rufford, D. Hulicova-Jurcakova, K. Khosla, Z. Zhu and G.Q. Lu, J. Power Sources, 195, 912 (2010); https://doi.org/10.1016/j.jpowsour.2009.08.048