This work is licensed under a Creative Commons Attribution 4.0 International License.
The Co-Production of Hydrogen and Methane from Dark Fermentation of Mixed Palm Oil Mill Effluent and Aquaculture Wastewater: Gompertz Modelling and Sludge Recovery
Corresponding Author(s) : Md. Nurul Islam Siddique
Asian Journal of Chemistry,
Vol. 35 No. 4 (2023): Vol 35 Issue 4, 2023
Abstract
The potentials for non-stop hydrogen and methane production employing an ideal loading mixture of palm oil mill effluent (POME) and aquaculture wastewater (AWW) in a double-phase digester at a thermophilic state are presented. Different organic loadings were studied such as 31, 41, 51 and 61 Kg COD/(m3 d) for the generation of hydrogen; 9, 11, 14 and 16 kg COD/(m3 d) for the synthesis of methane. In a UASB reactor, hydrogen production was kept under control with a constant HRT of 12 h. At the loading of 51 kg COD/h, the maximal H2 content, volumetric H2 generation rate and H2 yield were observed as 46%, 6 L H2/d and 34 mL H2/g COD, respectively (m3 d). After an HRT of 6 days, the substrate from the hydrogen digester was further fermented into methane in the CSTR digester. At an organic loading rate of 14 kg COD/h, the highest volumetric CH4 generation rate and yield were 11 L CH4/d and 0.13 m3 CH4/kg COD, respectively (m3 d). This two-stage procedure removed 92% of the chemical oxygen requirement overall. Based on the findings, the Gompertz modeling was a good fit for the cumulative methane generation patterns, with a strong correlation coefficient (> 0.994). Sludge recovery was 0.07 m3 sludge/m3 wastewater and water recovery was 0.82 m3/m3 wastewater. This double-phase technique has the potential to contribute greatly to the development of a comprehensive waste management plan, including the digestion of palm oil mill effluent and aquaculture wastewater.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Malinauskaite, H. Jouhara, D. Czajczynska, P. Stanchev, E. Katsou, P. Rostkowski, R.J. Thorne, J. Colón, S. Ponsá, F. Al-Mansour, L. Anguilano, R. Krzyzynska, I.C. López, A.Vlasopoulos and N. Spencer, Energy, 141, 2013 (2017); https://doi.org/10.1016/j.energy.2017.11.128
- Y. Li, C.P. Alaimo, M. Kim, N.Y. Kado, J. Peppers, J. Xue, C. Wan, P.G. Green, R. Zhang, B.M. Jenkins, C.F.A. Vogel, S. Wuertz, T.M. Young and M.J. Kleeman, Heliyon, 8, e10929 (2022); https://doi.org/10.1016/j.heliyon.2022.e10929
- T.H. Chowdhury, Energy Rep., 7, 247 (2021); https://doi.org/10.1016/j.egyr.2020.12.024
- S. Harirchi, S. Wainaina, T. Sar, S.A. Nojoumi, M. Parchami, M. Parchami, S. Varjani, S.K. Khanal, J. Wong, M.K. Awasthi and M.J. Taherzadeh, Bioengineered, 13, 6521 (2022); https://doi.org/10.1080/21655979.2022.2035986
- M. Farghali, A.I. Osman, K. Umetsu and D.W. Rooney, Environ. Chem. Lett., 20, 2853 (2022); https://doi.org/10.1007/s10311-022-01468-z
- F.M. Liew, M.E. Martin, R.C. Tappel, B.D. Heijstra, C. Mihalcea and M. Köpke, Front. Microbiol., 7, 694 (2016); https://doi.org/10.3389/fmicb.2016.00694
- T. Nevzorova and V. Kutcherov, Energy Strategy Rev., 26, 100414 (2019); https://doi.org/10.1016/j.esr.2019.100414
- M.S. Ayilara, O.S. Olanrewaju, O.O. Babalola and O. Odeyemi, Sustainability, 12, 4456 (2020); https://doi.org/10.3390/su12114456
- S. Sarker, J.J. Lamb, D.R. Hjelme and K.M. Lien, Appl. Sci., 9, 1915 (2019); https://doi.org/10.3390/app9091915
- M. Berni, I. Dorileo, G. Nathia, T. Forster-Carneiro, D. Lachos and B.G.M. Santos, Int. J. Chem. Eng., 2014, 543529 (2014); https://doi.org/10.1155/2014/543529
- M.N.I. Siddique, M.S.A. Munaim and A.W. Zularisam, J. Taiwan Inst. Chem. Eng., 58, 451 (2016); https://doi.org/10.1016/j.jtice.2015.06.038
- Z. Hongguang, Y. Jing and C. Xiaowei, E3S Web of Conf., 118, 03022 (2019); https://doi.org/10.1051/e3sconf/201911803022
- H.E. Bari, N. Lahboubi, S. Habchi, S. Rachidi, O. Bayssi, N. Nabil, Y. Mortezaei and R. Villa, Clean. Waste Syst., 3, 100043 (2022); https://doi.org/10.1016/j.clwas.2022.100043
- N.B. Khedher, F.A. Lattieff, J.M. Mahdi, M.S. Ghanim, H.S. Majdi, M.J. Jweeg and N. Baazaoui, J. Clean. Prod., 375, 134103 (2022); https://doi.org/10.1016/j.jclepro.2022.134103
- N.I. Siddique and Z.A. Wahid, J. Environ. Sci. Technol., 5, 155 (2012); https://doi.org/10.3923/jest.2012.155.167
- B.K. Zaied, M.N.I. Siddique, A.W. Zularisam, M.F. Ahmad and Y.M. Salih, Asian J. Chem., 31, 2413 (2019); https://doi.org/10.14233/ajchem.2019.22196
- M.N.I. Siddique, M.S.A. Munaim and Z.B.A. Wahid, J. Clean. Prod., 145, 303 (2017); https://doi.org/10.1016/j.jclepro.2017.01.061
- Z.B. Khalid, M.N.I. Siddique, A. Nayeem, T.M. Adyel, S.B. Ismail and M.Z. Ibrahim, J. Environ. Chem. Eng., 9, 105489 (2021); https://doi.org/10.1016/j.jece.2021.105489
- S. Krishnan, L. Singh, P. Mishra, M. Nasrullah, M. Sakinah, S. Thakur, N.I. Siddique and Z.A. Wahid, Environ. Technol. Innov., 8, 360 (2017); https://doi.org/10.1016/j.eti.2017.08.005
- Z.B. Khalid, M.N.I. Siddique, M. Nasrullah, L. Singh, Z.B.A. Wahid and M.F. Ahmad, Environ. Technol. Innov., 16, 100446 (2019); https://doi.org/10.1016/j.eti.2019.100446
- M.N.I. Siddique, M. Sakinah Abd Munaim and A.W. Zularisam, J. Ind. Eng. Chem., 20, 331 (2014); https://doi.org/10.1016/j.jiec.2013.03.030
- P.N.Y. Yek, C. Li, W. Peng, C.S. Wong, R.K. Liew, W.A. Wan Mahari, C. Sonne and S.S. Lam, Chem. Eng. J., 425, 131886 (2021); https://doi.org/10.1016/j.cej.2021.131886
- Q. Yang, S. Ravnskov, J.W.M. Pullens and M.N. Andersen, Sci. Total Environ., 816, 151649 (2022); https://doi.org/10.1016/j.scitotenv.2021.151649
- Z. Shi, M. Usman, J. He, H. Chen, S. Zhang and G. Luo, Water Res., 205, 117679 (2021); https://doi.org/10.1016/j.watres.2021.117679
- Y. Li, X. Chen, L. Liu, P. Liu, Z. Zhou, Y. Huhetaoli, Y. Wu and T. Lei, J. Anal. Appl. Pyrolysis, 162, 105449 (2022); https://doi.org/10.1016/j.jaap.2022.105449
- A. Pant and J.P.N. Rai, Environmental Challenges, 5, 100262 (2021); https://doi.org/10.1016/j.envc.2021.100262
- G. Kaur, D. Johnravindar and J.W.C. Wong, Bioresour. Technol., 308, 123250 (2020); https://doi.org/10.1016/j.biortech.2020.123250
- M. Lebuhn, F. Liu, H. Heuwinkel and A. Gronauer, Water Sci. Technol., 58, 1645 (2008); https://doi.org/10.2166/wst.2008.495
- D. Johnravindar, J.W.C. Wong, D. Chakraborty, G. Bodedla and G. Kaur, J. Environ. Manage., 290, 112457 (2021); https://doi.org/10.1016/j.jenvman.2021.112457
- Z. Yang, Z. Wang, G. Liang, X. Zhang and X. Xie, Chem. Eng. J., 426, 131777 (2021); https://doi.org/10.1016/j.cej.2021.131777
- F. Zheng, J. Fang, F. Guo, X. Yang, T. Liu, M. Chen, M. Nie and Y.C. Chen, Eng. J., 432, 134377 (2022); https://doi.org/10.1016/j.cej.2021.134377
References
J. Malinauskaite, H. Jouhara, D. Czajczynska, P. Stanchev, E. Katsou, P. Rostkowski, R.J. Thorne, J. Colón, S. Ponsá, F. Al-Mansour, L. Anguilano, R. Krzyzynska, I.C. López, A.Vlasopoulos and N. Spencer, Energy, 141, 2013 (2017); https://doi.org/10.1016/j.energy.2017.11.128
Y. Li, C.P. Alaimo, M. Kim, N.Y. Kado, J. Peppers, J. Xue, C. Wan, P.G. Green, R. Zhang, B.M. Jenkins, C.F.A. Vogel, S. Wuertz, T.M. Young and M.J. Kleeman, Heliyon, 8, e10929 (2022); https://doi.org/10.1016/j.heliyon.2022.e10929
T.H. Chowdhury, Energy Rep., 7, 247 (2021); https://doi.org/10.1016/j.egyr.2020.12.024
S. Harirchi, S. Wainaina, T. Sar, S.A. Nojoumi, M. Parchami, M. Parchami, S. Varjani, S.K. Khanal, J. Wong, M.K. Awasthi and M.J. Taherzadeh, Bioengineered, 13, 6521 (2022); https://doi.org/10.1080/21655979.2022.2035986
M. Farghali, A.I. Osman, K. Umetsu and D.W. Rooney, Environ. Chem. Lett., 20, 2853 (2022); https://doi.org/10.1007/s10311-022-01468-z
F.M. Liew, M.E. Martin, R.C. Tappel, B.D. Heijstra, C. Mihalcea and M. Köpke, Front. Microbiol., 7, 694 (2016); https://doi.org/10.3389/fmicb.2016.00694
T. Nevzorova and V. Kutcherov, Energy Strategy Rev., 26, 100414 (2019); https://doi.org/10.1016/j.esr.2019.100414
M.S. Ayilara, O.S. Olanrewaju, O.O. Babalola and O. Odeyemi, Sustainability, 12, 4456 (2020); https://doi.org/10.3390/su12114456
S. Sarker, J.J. Lamb, D.R. Hjelme and K.M. Lien, Appl. Sci., 9, 1915 (2019); https://doi.org/10.3390/app9091915
M. Berni, I. Dorileo, G. Nathia, T. Forster-Carneiro, D. Lachos and B.G.M. Santos, Int. J. Chem. Eng., 2014, 543529 (2014); https://doi.org/10.1155/2014/543529
M.N.I. Siddique, M.S.A. Munaim and A.W. Zularisam, J. Taiwan Inst. Chem. Eng., 58, 451 (2016); https://doi.org/10.1016/j.jtice.2015.06.038
Z. Hongguang, Y. Jing and C. Xiaowei, E3S Web of Conf., 118, 03022 (2019); https://doi.org/10.1051/e3sconf/201911803022
H.E. Bari, N. Lahboubi, S. Habchi, S. Rachidi, O. Bayssi, N. Nabil, Y. Mortezaei and R. Villa, Clean. Waste Syst., 3, 100043 (2022); https://doi.org/10.1016/j.clwas.2022.100043
N.B. Khedher, F.A. Lattieff, J.M. Mahdi, M.S. Ghanim, H.S. Majdi, M.J. Jweeg and N. Baazaoui, J. Clean. Prod., 375, 134103 (2022); https://doi.org/10.1016/j.jclepro.2022.134103
N.I. Siddique and Z.A. Wahid, J. Environ. Sci. Technol., 5, 155 (2012); https://doi.org/10.3923/jest.2012.155.167
B.K. Zaied, M.N.I. Siddique, A.W. Zularisam, M.F. Ahmad and Y.M. Salih, Asian J. Chem., 31, 2413 (2019); https://doi.org/10.14233/ajchem.2019.22196
M.N.I. Siddique, M.S.A. Munaim and Z.B.A. Wahid, J. Clean. Prod., 145, 303 (2017); https://doi.org/10.1016/j.jclepro.2017.01.061
Z.B. Khalid, M.N.I. Siddique, A. Nayeem, T.M. Adyel, S.B. Ismail and M.Z. Ibrahim, J. Environ. Chem. Eng., 9, 105489 (2021); https://doi.org/10.1016/j.jece.2021.105489
S. Krishnan, L. Singh, P. Mishra, M. Nasrullah, M. Sakinah, S. Thakur, N.I. Siddique and Z.A. Wahid, Environ. Technol. Innov., 8, 360 (2017); https://doi.org/10.1016/j.eti.2017.08.005
Z.B. Khalid, M.N.I. Siddique, M. Nasrullah, L. Singh, Z.B.A. Wahid and M.F. Ahmad, Environ. Technol. Innov., 16, 100446 (2019); https://doi.org/10.1016/j.eti.2019.100446
M.N.I. Siddique, M. Sakinah Abd Munaim and A.W. Zularisam, J. Ind. Eng. Chem., 20, 331 (2014); https://doi.org/10.1016/j.jiec.2013.03.030
P.N.Y. Yek, C. Li, W. Peng, C.S. Wong, R.K. Liew, W.A. Wan Mahari, C. Sonne and S.S. Lam, Chem. Eng. J., 425, 131886 (2021); https://doi.org/10.1016/j.cej.2021.131886
Q. Yang, S. Ravnskov, J.W.M. Pullens and M.N. Andersen, Sci. Total Environ., 816, 151649 (2022); https://doi.org/10.1016/j.scitotenv.2021.151649
Z. Shi, M. Usman, J. He, H. Chen, S. Zhang and G. Luo, Water Res., 205, 117679 (2021); https://doi.org/10.1016/j.watres.2021.117679
Y. Li, X. Chen, L. Liu, P. Liu, Z. Zhou, Y. Huhetaoli, Y. Wu and T. Lei, J. Anal. Appl. Pyrolysis, 162, 105449 (2022); https://doi.org/10.1016/j.jaap.2022.105449
A. Pant and J.P.N. Rai, Environmental Challenges, 5, 100262 (2021); https://doi.org/10.1016/j.envc.2021.100262
G. Kaur, D. Johnravindar and J.W.C. Wong, Bioresour. Technol., 308, 123250 (2020); https://doi.org/10.1016/j.biortech.2020.123250
M. Lebuhn, F. Liu, H. Heuwinkel and A. Gronauer, Water Sci. Technol., 58, 1645 (2008); https://doi.org/10.2166/wst.2008.495
D. Johnravindar, J.W.C. Wong, D. Chakraborty, G. Bodedla and G. Kaur, J. Environ. Manage., 290, 112457 (2021); https://doi.org/10.1016/j.jenvman.2021.112457
Z. Yang, Z. Wang, G. Liang, X. Zhang and X. Xie, Chem. Eng. J., 426, 131777 (2021); https://doi.org/10.1016/j.cej.2021.131777
F. Zheng, J. Fang, F. Guo, X. Yang, T. Liu, M. Chen, M. Nie and Y.C. Chen, Eng. J., 432, 134377 (2022); https://doi.org/10.1016/j.cej.2021.134377