This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural and Luminescence Analysis of Low Temperature Solution Combustion Derived White Light Emitting Y2(1-x)Dy2xZr2O7 Nanophosphors for WLEDs
Corresponding Author(s) : Sonika Singh
Asian Journal of Chemistry,
Vol. 35 No. 4 (2023): Vol 35 Issue 4, 2023
Abstract
White light emitting dysprosium doped rare-earth zirconate Y2(1-x)Dy2xZr2O7 (x = 0.5 to 5 mol%) crystalline phosphors in nano-regime were obtained using urea supported solution combustion methodology at low temperature 650 ºC. Presence of fluorite structure having cubic symmetry with Fm3m space group was analyzed by powder X-ray diffraction patterns. Spherical shaped nanoparticles with clear boundaries were observed by surface morphological studies. Diverse elements Y, Zr, Dy and O were present in the optimized nanophosphors as examined by energy dispersive X-ray analysis. Upon near ultraviolet (NUV) excitation at 354 nm wavelength, the Y2(1-x)Dy2xZr2O7 phosphors displayed the characteristic white light emanation resulted from blue and yellow emission owing to 4F9/2→6H15/2 (450-525 nm) and 4F9/2→6H13/2 (525-650) transitions, respectively. With the doping of 1.5 mol% amount of Dy3+ ions in Y2(1-x)Dy2xZr2O7 powders showed maximum photoluminescence emission, above which intensity was quenched due to dipole-dipole interactions. In addition, Y1.97Dy0.03Zr2O7 nanopowders exhibit CIE colour coordinates (0.2605, 0.3145) residing in white region. The closeness of this value to the white emission coordinates of the National Television System Committee (NTSC) endorsed Y2(1-x)Dy2xZr2O7 nanophosphors as fascinating candidate for displays and white light emitting diodes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Q. Guo, X. Ma, L. Liao, H. Liu, D. Yang, N. Liu and L. Mei, J. Solid State Chem., 280, 121009 (2019); https://doi.org/10.1016/j.jssc.2019.121009
- A.K. Bedyal, D.D. Ramteke, V. Kumar and H.C. Swart, J. Mater. Sci. Mater. Electron., 30, 11714 (2019); https://doi.org/10.1007/s10854-019-01533-4
- Y. Wang, F. Hong, L. Yu, H. Xu, G. Liu, X. Dong, W. Yu and J. Wang, J. Lumin., 221, 117072 (2020); https://doi.org/10.1016/j.jlumin.2020.117072
- P. Sehrawat, A. Khatkar, P. Boora, M. Kumar, R.K. Malik, S.P. Khatkar and V.B. Taxak, Chem. Phys. Lett., 758, 137937 (2020); https://doi.org/10.1016/j.cplett.2020.137937
- P. Sehrawat, R.K. Malik, P. Boora, M. Punia, M. Sheoran, P. Chhillar, S.P. Khatkar and V.B. Taxak, Chem. Phys. Lett., 763, 138243 (2021); https://doi.org/10.1016/j.cplett.2020.138243
- J. Zhong, D. Chen, Y. Zhou, Z. Wan, M. Ding, W. Bai and Z. Ji, Dalton Trans., 45, 4762 (2016); https://doi.org/10.1039/C5DT04909A
- A. Mancuso and G. Iervolino, Catalysts, 12, 1074 (2022); https://doi.org/10.3390/catal12101074
- E. Matioli, S. Brinkley, K.M. Kelchner, Y.L. Hu, S. Nakamura, S. DenBaars, J. Speck and C. Weisbuch, Light Sci. Appl., 1, e22 (2012); https://doi.org/10.1038/lsa.2012.22
- J. McKittrick and L.E. Shea-Rohwer, J. Am. Ceram. Soc., 97, 1327 (2014); https://doi.org/10.1111/jace.12943
- P. Sehrawat, A. Khatkar, P. Boora, M. Kumar, R.K. Malik, S.P. Khatkar and V.B. Taxak, Ceram. Int., 46, 16274 (2020); https://doi.org/10.1016/j.ceramint.2020.03.184
- Q. Guo, L. Liao, M.S. Molokeev, L. Mei and H. Liu, Mater. Res. Bull., 72, 245 (2015); https://doi.org/10.1016/j.materresbull.2015.07.029
- V. Sharma, S. Choudhary, P. Mankotia, A. Kumari, K. Sharma, R. Sehgal and V. Kumar, TrAC Trends Anal. Chem., 143, 116378 (2021); https://doi.org/10.1016/j.trac.2021.116378
- G. Karthick, A. Karati and B.S. Murty, J. Alloys Compd., 837, 155491 (2020); https://doi.org/10.1016/j.jallcom.2020.155491
- M. Jovaní, A. Sanz, H. Beltrán-Mir and E. Cordoncillo, Dyes Pigments, 133, 33 (2016); https://doi.org/10.1016/j.dyepig.2016.05.042
- K. Lu, Z. Liu, Y. Wang, W. Yang, H. Peng, Y. Ye, Y. Shi, J. Qi and T. Lu, J. Alloys Compd., 905, 164133 (2022); https://doi.org/10.1016/j.jallcom.2022.164133
- Y. Tong, X. Chen, Q. Wang and H. Huo, Mater. Lett., 157, 106 (2015); https://doi.org/10.1016/j.matlet.2015.05.089
- C. Kaliyaperumal, A. Sankarakumar and T. Paramasivam, J. Alloys Compd., 831, 154782 (2020); https://doi.org/10.1016/j.jallcom.2020.154782
- Y. Tong, P. Xue, F. Jian, L. Lu, X. Wang and X. Yang, Mater. Sci. Eng. B., 150, 194 (2008); https://doi.org/10.1016/j.mseb.2008.04.009
- H. Li, Q. Tao, N. Li, R. Tang, Y. Zhao, H. Zhu, P. Zhu and X. Wang, J. Alloys Compd., 660, 446 (2016); https://doi.org/10.1016/j.jallcom.2015.11.137
- M. Saif, J. Lumin., 135, 187 (2013); https://doi.org/10.1016/j.jlumin.2012.10.022
- H. Teymourinia, Advanced Rare Earth-Based Ceramic Nanomaterials, Elsevier, pp.77-103 (2022); https://doi.org/10.1016/B978-0-323-89957-4.00004-9
- A. Zhang, M. Lü, Z. Yang, G. Zhou and Y. Zhou, Solid State Sci., 10, 74 (2008); https://doi.org/10.1016/j.solidstatesciences.2007.07.037
- R.S. Rejith, J.K. Thomas and S. Solomon, Solid State Ion., 323, 112 (2018); https://doi.org/10.1016/j.ssi.2018.05.025
- M. Jovaní, M. Fortuño-Morte, H. Beltrán-Mir and E. Cordoncillo, J. Eur. Ceram. Soc., 38, 2210 (2018); https://doi.org/10.1016/j.jeurceramsoc.2017.12.005
- Y. Ye, Z. Tang, Z. Ji, H. Xiao, Y. Liu, Y. Qin, L. Liang, J. Qi and T. Lu, Opt. Mater., 121, 111643 (2021); https://doi.org/10.1016/j.optmat.2021.111643
- J. Wang, K. Lu, Y. Ye, Y. Qin, W. Han and J. Qi, Ceram. Int., 48, 35050 (2022); https://doi.org/10.1016/j.ceramint.2022.08.094
- Z. Tang, Z. Huang, W. Han, J. Qi, N. Ma, Y. Zhang and T. Lu, Scr. Mater., 178, 90 (2020); https://doi.org/10.1016/j.scriptamat.2019.11.007
- Z. Tang, J. Qi, Z. Huang, L. Liang, A. Liu, Y. Ye, Y. Zhang and T. Lu, Ceram. Int., 48, 4216 (2022); https://doi.org/10.1016/j.ceramint.2021.10.213
- A. Kumar and J. Manam, J. Alloys Compd., 829, 154610 (2020); https://doi.org/10.1016/j.jallcom.2020.154610
- Ramadhin, J.K. Saluja, R. Shrivastava and V. Dubey, Optik, 260, 169082 (2022); https://doi.org/10.1016/j.ijleo.2022.169082
- J. Papan, K. Vukovic, S.P. Ahrenkiel, D.J. Jovanovic and M.D. Dramicanin, J. Alloys Compd., 712, 437 (2017); https://doi.org/10.1016/j.jallcom.2017.04.139
- A. Zhang, M. Lü, Z. Qiu, Y. Zhou and Q. Ma, Mater. Chem. Phys., 109, 105 (2008); https://doi.org/10.1016/j.matchemphys.2007.10.042
- Y. Wang, P. Darapaneni, O. Kizilkaya and J.A. Dorman, Inorg. Chem., 59, 2358 (2020); https://doi.org/10.1021/acs.inorgchem.9b03226
- Q. Du, G. Zhou, H. Zhou and Z. Yang, Opt. Mater., 35, 257 (2012); https://doi.org/10.1016/j.optmat.2012.08.014
- A. Kumar and J. Manam, Ceram. Int., 48, 13615 (2022); https://doi.org/10.1016/j.ceramint.2022.01.241
- A. Zhang, P. Yang, Y. Cao and Y. Zhu, Adv. Mater. Lett., 2, 322 (2011); https://doi.org/10.5185/amLett.2011.3042am2011
- Q. Du, G. Zhou, J. Zhou, X. Jia and H. Zhou, J. Alloys Compd., 552, 152 (2013); https://doi.org/10.1016/j.jallcom.2012.10.074
- M. Dhanalakshmi, H. Nagabhushana, G.P. Darshan, R.B. Basavaraj, and B. Daruka Prasad, J. Sci.: Adv. Mater. Devices, 2, 22 (2017); https://doi.org/10.1016/j.jsamd.2017.02.004
- P. Sehrawat, A. Khatkar, S. Devi, A. Hooda, S. Singh, R.K. Malik, S.P. Khatkar and V.B. Taxak, Chem. Phys. Lett., 737, 136842 (2019); https://doi.org/10.1016/j.cplett.2019.136842
- Sonika, S.P. Khatkar, A. Khatkar, R. Kumar and V.B. Taxak, J. Electron. Mater., 44, 542 (2015); https://doi.org/10.1007/s11664-014-3465-y
- C.M. Mehare, N.S. Dhoble, C. Ghanty and S.J. Dhoble, J. Mol. Struct., 1227, 129417 (2021); https://doi.org/10.1016/j.molstruc.2020.129417
- J. Xian, S. Yi, Y. Deng, L. Zhang, X. Hu and Y. Wang, Physica B Condens. Matter, 483, 19 (2016); https://doi.org/10.1016/j.physb.2015.12.022
- M. Sheoran, P. Sehrawat, N. Kumari, S.P. Khatkar and R.K. Malik, Chem. Phys. Lett., 773, 138608 (2021); https://doi.org/10.1016/j.cplett.2021.138608
- T. Krishnapriya, A. Jose, T. Anna Jose, C. Joseph, N.V. Unnikrishnan and P.R. Biju, Adv. Powder Technol., 32, 1023 (2021); https://doi.org/10.1016/j.apt.2021.02.003
- R. Shrivastava, J. Kaur and V. Dubey, J. Fluoresc., 26, 105 (2016); https://doi.org/10.1007/s10895-015-1689-8
References
Q. Guo, X. Ma, L. Liao, H. Liu, D. Yang, N. Liu and L. Mei, J. Solid State Chem., 280, 121009 (2019); https://doi.org/10.1016/j.jssc.2019.121009
A.K. Bedyal, D.D. Ramteke, V. Kumar and H.C. Swart, J. Mater. Sci. Mater. Electron., 30, 11714 (2019); https://doi.org/10.1007/s10854-019-01533-4
Y. Wang, F. Hong, L. Yu, H. Xu, G. Liu, X. Dong, W. Yu and J. Wang, J. Lumin., 221, 117072 (2020); https://doi.org/10.1016/j.jlumin.2020.117072
P. Sehrawat, A. Khatkar, P. Boora, M. Kumar, R.K. Malik, S.P. Khatkar and V.B. Taxak, Chem. Phys. Lett., 758, 137937 (2020); https://doi.org/10.1016/j.cplett.2020.137937
P. Sehrawat, R.K. Malik, P. Boora, M. Punia, M. Sheoran, P. Chhillar, S.P. Khatkar and V.B. Taxak, Chem. Phys. Lett., 763, 138243 (2021); https://doi.org/10.1016/j.cplett.2020.138243
J. Zhong, D. Chen, Y. Zhou, Z. Wan, M. Ding, W. Bai and Z. Ji, Dalton Trans., 45, 4762 (2016); https://doi.org/10.1039/C5DT04909A
A. Mancuso and G. Iervolino, Catalysts, 12, 1074 (2022); https://doi.org/10.3390/catal12101074
E. Matioli, S. Brinkley, K.M. Kelchner, Y.L. Hu, S. Nakamura, S. DenBaars, J. Speck and C. Weisbuch, Light Sci. Appl., 1, e22 (2012); https://doi.org/10.1038/lsa.2012.22
J. McKittrick and L.E. Shea-Rohwer, J. Am. Ceram. Soc., 97, 1327 (2014); https://doi.org/10.1111/jace.12943
P. Sehrawat, A. Khatkar, P. Boora, M. Kumar, R.K. Malik, S.P. Khatkar and V.B. Taxak, Ceram. Int., 46, 16274 (2020); https://doi.org/10.1016/j.ceramint.2020.03.184
Q. Guo, L. Liao, M.S. Molokeev, L. Mei and H. Liu, Mater. Res. Bull., 72, 245 (2015); https://doi.org/10.1016/j.materresbull.2015.07.029
V. Sharma, S. Choudhary, P. Mankotia, A. Kumari, K. Sharma, R. Sehgal and V. Kumar, TrAC Trends Anal. Chem., 143, 116378 (2021); https://doi.org/10.1016/j.trac.2021.116378
G. Karthick, A. Karati and B.S. Murty, J. Alloys Compd., 837, 155491 (2020); https://doi.org/10.1016/j.jallcom.2020.155491
M. Jovaní, A. Sanz, H. Beltrán-Mir and E. Cordoncillo, Dyes Pigments, 133, 33 (2016); https://doi.org/10.1016/j.dyepig.2016.05.042
K. Lu, Z. Liu, Y. Wang, W. Yang, H. Peng, Y. Ye, Y. Shi, J. Qi and T. Lu, J. Alloys Compd., 905, 164133 (2022); https://doi.org/10.1016/j.jallcom.2022.164133
Y. Tong, X. Chen, Q. Wang and H. Huo, Mater. Lett., 157, 106 (2015); https://doi.org/10.1016/j.matlet.2015.05.089
C. Kaliyaperumal, A. Sankarakumar and T. Paramasivam, J. Alloys Compd., 831, 154782 (2020); https://doi.org/10.1016/j.jallcom.2020.154782
Y. Tong, P. Xue, F. Jian, L. Lu, X. Wang and X. Yang, Mater. Sci. Eng. B., 150, 194 (2008); https://doi.org/10.1016/j.mseb.2008.04.009
H. Li, Q. Tao, N. Li, R. Tang, Y. Zhao, H. Zhu, P. Zhu and X. Wang, J. Alloys Compd., 660, 446 (2016); https://doi.org/10.1016/j.jallcom.2015.11.137
M. Saif, J. Lumin., 135, 187 (2013); https://doi.org/10.1016/j.jlumin.2012.10.022
H. Teymourinia, Advanced Rare Earth-Based Ceramic Nanomaterials, Elsevier, pp.77-103 (2022); https://doi.org/10.1016/B978-0-323-89957-4.00004-9
A. Zhang, M. Lü, Z. Yang, G. Zhou and Y. Zhou, Solid State Sci., 10, 74 (2008); https://doi.org/10.1016/j.solidstatesciences.2007.07.037
R.S. Rejith, J.K. Thomas and S. Solomon, Solid State Ion., 323, 112 (2018); https://doi.org/10.1016/j.ssi.2018.05.025
M. Jovaní, M. Fortuño-Morte, H. Beltrán-Mir and E. Cordoncillo, J. Eur. Ceram. Soc., 38, 2210 (2018); https://doi.org/10.1016/j.jeurceramsoc.2017.12.005
Y. Ye, Z. Tang, Z. Ji, H. Xiao, Y. Liu, Y. Qin, L. Liang, J. Qi and T. Lu, Opt. Mater., 121, 111643 (2021); https://doi.org/10.1016/j.optmat.2021.111643
J. Wang, K. Lu, Y. Ye, Y. Qin, W. Han and J. Qi, Ceram. Int., 48, 35050 (2022); https://doi.org/10.1016/j.ceramint.2022.08.094
Z. Tang, Z. Huang, W. Han, J. Qi, N. Ma, Y. Zhang and T. Lu, Scr. Mater., 178, 90 (2020); https://doi.org/10.1016/j.scriptamat.2019.11.007
Z. Tang, J. Qi, Z. Huang, L. Liang, A. Liu, Y. Ye, Y. Zhang and T. Lu, Ceram. Int., 48, 4216 (2022); https://doi.org/10.1016/j.ceramint.2021.10.213
A. Kumar and J. Manam, J. Alloys Compd., 829, 154610 (2020); https://doi.org/10.1016/j.jallcom.2020.154610
Ramadhin, J.K. Saluja, R. Shrivastava and V. Dubey, Optik, 260, 169082 (2022); https://doi.org/10.1016/j.ijleo.2022.169082
J. Papan, K. Vukovic, S.P. Ahrenkiel, D.J. Jovanovic and M.D. Dramicanin, J. Alloys Compd., 712, 437 (2017); https://doi.org/10.1016/j.jallcom.2017.04.139
A. Zhang, M. Lü, Z. Qiu, Y. Zhou and Q. Ma, Mater. Chem. Phys., 109, 105 (2008); https://doi.org/10.1016/j.matchemphys.2007.10.042
Y. Wang, P. Darapaneni, O. Kizilkaya and J.A. Dorman, Inorg. Chem., 59, 2358 (2020); https://doi.org/10.1021/acs.inorgchem.9b03226
Q. Du, G. Zhou, H. Zhou and Z. Yang, Opt. Mater., 35, 257 (2012); https://doi.org/10.1016/j.optmat.2012.08.014
A. Kumar and J. Manam, Ceram. Int., 48, 13615 (2022); https://doi.org/10.1016/j.ceramint.2022.01.241
A. Zhang, P. Yang, Y. Cao and Y. Zhu, Adv. Mater. Lett., 2, 322 (2011); https://doi.org/10.5185/amLett.2011.3042am2011
Q. Du, G. Zhou, J. Zhou, X. Jia and H. Zhou, J. Alloys Compd., 552, 152 (2013); https://doi.org/10.1016/j.jallcom.2012.10.074
M. Dhanalakshmi, H. Nagabhushana, G.P. Darshan, R.B. Basavaraj, and B. Daruka Prasad, J. Sci.: Adv. Mater. Devices, 2, 22 (2017); https://doi.org/10.1016/j.jsamd.2017.02.004
P. Sehrawat, A. Khatkar, S. Devi, A. Hooda, S. Singh, R.K. Malik, S.P. Khatkar and V.B. Taxak, Chem. Phys. Lett., 737, 136842 (2019); https://doi.org/10.1016/j.cplett.2019.136842
Sonika, S.P. Khatkar, A. Khatkar, R. Kumar and V.B. Taxak, J. Electron. Mater., 44, 542 (2015); https://doi.org/10.1007/s11664-014-3465-y
C.M. Mehare, N.S. Dhoble, C. Ghanty and S.J. Dhoble, J. Mol. Struct., 1227, 129417 (2021); https://doi.org/10.1016/j.molstruc.2020.129417
J. Xian, S. Yi, Y. Deng, L. Zhang, X. Hu and Y. Wang, Physica B Condens. Matter, 483, 19 (2016); https://doi.org/10.1016/j.physb.2015.12.022
M. Sheoran, P. Sehrawat, N. Kumari, S.P. Khatkar and R.K. Malik, Chem. Phys. Lett., 773, 138608 (2021); https://doi.org/10.1016/j.cplett.2021.138608
T. Krishnapriya, A. Jose, T. Anna Jose, C. Joseph, N.V. Unnikrishnan and P.R. Biju, Adv. Powder Technol., 32, 1023 (2021); https://doi.org/10.1016/j.apt.2021.02.003
R. Shrivastava, J. Kaur and V. Dubey, J. Fluoresc., 26, 105 (2016); https://doi.org/10.1007/s10895-015-1689-8