This work is licensed under a Creative Commons Attribution 4.0 International License.
Ultrasonic Assisted Facile Synthesis of CuO Nanoparticles and Used as Insecticide for Mosquito Control
Corresponding Author(s) : Jothilingam Sivapriya
Asian Journal of Chemistry,
Vol. 35 No. 4 (2023): Vol 35 Issue 4, 2023
Abstract
The present study deals with the fabrication of copper oxide nanoparticles with high purity via ultrasonic assisted chemical precipitation method. Synthesized CuO nano-mosquitocides rely on the polyvinyl pyrrolidine (PVP) as stabilizing agent. Synthesized CuO nanoparticles were confirmed via UV-vis spectroscopy, scanning electron microscope, X-ray diffraction, EDX, Fourier-transform infrared and SEM mapping studies. The crystallite size from XRD studies revealed around 13.44 nm. The synthesized CuO nanoparticle was further assessed for mosquito larvicidal activity against south-urban mosquito larvae Aedes aegypti. The synthesized CuO nanoparticle displayed significant activity against Aedes aegypti with the LD50 value of 43.95 μg/mL than precursor copper chloride dihydrate and control permethrin with the LD50 value of 94.31 and 72.44 μg/mL.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.L. Richards, B.D. Byrd, M.H. Reiskind and A.V. White, Environ. Health Insights, 14, (2020); https://doi.org/10.1177/1178630220952790
- D.R.J. Pleydell and J. Bouyer, Commun. Biol., 2, 201 (2019); https://doi.org/10.1038/s42003-019-0451-1
- G. Benelli, Parasitol. Res., 114, 2801 (2015); https://doi.org/10.1007/s00436-015-4586-9
- M.S. Fradin and J.F. Day, N. Engl. J. Med., 347, 13 (2002); https://doi.org/10.1056/NEJMoa011699
- J. Talapko, I. Škrlec, T. Alebic, M. Jukic and A. Vcev, Microorganisms, 7, 179 (2019); https://doi.org/10.3390/microorganisms7060179
- L. Bernhard, P. Bernhard and P. Magnussen, Physiotherapy, 89, 743 (2003); https://doi.org/10.1016/S0031-9406(05)60500-7
- C. Burda, X. Chen, R. Narayanan and M.A. El-Sayed, Chem. Rev., 105, 1025 (2005); https://doi.org/10.1021/cr030063a
- P.B. Chouke, T. Shrirame, A.K. Potbhare, A. Mondal, A.R. Chaudhary, S. Mondal, S.R. Thakare, E. Nepovimova, M. Valis, K. Kuca, R. Sharma and R.G. Chaudhary, Mater. Today Advan., 16, 100314 (2022); https://doi.org/10.1016/j.mtadv.2022.100314
- A. Hagfeldt and M. Graetzel, Chem. Rev., 95, 49 (1995); https://doi.org/10.1021/cr00033a003
- H.M. Xiao, S.Y. Fu, L.P. Zhu, Y.Q. Li and G. Yang, Eur. J. Inorg. Chem., 1966 (2007); https://doi.org/10.1002/ejic.200601029
- M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang and C.W. Chu, Phys. Rev. Lett., 58, 908 (1987); https://doi.org/10.1103/PhysRevLett.58.908
- Y.Y. Xu, D.R. Chen and X.L. Jiao, J. Phys. Chem. B, 109, 13561 (2005); https://doi.org/10.1021/jp051577b
- A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar and P.K. Patanjali, Appl. Phys. Lett., 84, 1180 (2004); https://doi.org/10.1063/1.1646760
- J.B. Reitz and E.I.J. Solomon, J. Am. Chem. Soc., 120, 11467 (1998); https://doi.org/10.1021/ja981579s
- L. Rout, S. Jammi and T. Punniyamurthy, Org. Lett., 9, 3397 (2007); https://doi.org/10.1021/ol0713887
- S. Pande, A. Saha, S. Jana, S. Sarkar, M. Basu, M. Pradhan, A.K. Sinha, S. Saha, A. Pal and T. Pal, Org. Lett., 10, 5179 (2008); https://doi.org/10.1021/ol802040x
- Y. Chang and H.C. Zeng, Cryst. Growth Des., 4, 397 (2004); https://doi.org/10.1021/cg034127m
- A.A. Eliseev, A.V. Lukashin, A.A. Vertegel, L.I. Heifets, A.I. Zhirov and Y.D. Tretyakov, Mater. Res. Innov., 3, 308 (2000); https://doi.org/10.1007/PL00010877
- J.F. Xu, W. Ji, Z.X. Shen, S.H. Tang, X.R. Ye, D.Z. Jia and X.Q. Xin, J. Solid State Chem., 147, 516 (1999); https://doi.org/10.1006/jssc.1999.8409
- W. Wang, Y. Zhan and G. Wang, Chem. Commun., 727 (2001); https://doi.org/10.1039/b008215p
- S. Nakao, M. Ikeyama, T. Mizota, P. Jin, M. Tazawa, Y. Miyagawa, S. Miyagawa, S. Wang and L. Wang, Rep. Res. Cent. Ion Beam Technol. Hosei Univ., 18(Suppl.), 153 (2000).
- K. Borgohain, J.B. Singh, M.V. Rama Rao, T. Shripathi and S. Mahamuni, Phys. Rev. B Condens. Matter, 61, 11093 (2000); https://doi.org/10.1103/PhysRevB.61.11093
- H. Wang, J.Z. Xu, J.J. Zhu and H.Y. Chen, J. Cryst. Growth, 244, 88 (2002); https://doi.org/10.1016/S0022-0248(02)01571-3
- X.D. Xu, M. Zhang, J. Feng and M.L. Zhang, Mater. Lett., 62, 2787 (2008); https://doi.org/10.1016/j.matlet.2008.01.046
- A. Henglein, Chem. Rev., 89, 1861 (1989); https://doi.org/10.1021/cr00098a010
- J.Q. Yu, Z. Xu and D.Z. Jia, Chin. J. Funct. Mater. Instrum, 5, 267 (1999).
- A. Galembeck and O.L. Alves, Synth. Met., 102, 1238 (1999); https://doi.org/10.1016/S0379-6779(98)01439-8
- Y. Cudennec and A. Lecerf, Solid State Sci., 5, 1471 (2003); https://doi.org/10.1016/j.solidstatesciences.2003.09.009
- C.H. Lu, L.M. Qi, J.H. Yang, D.H. Zhang, N.Z. Wu and J.M. Ma, J. Phys. Chem. B, 108, 17825 (2004); https://doi.org/10.1021/jp046772p
- L.X. Yang, Y.J. Zhu, H. Tong, L. Li and L. Zhang, Mater. Chem. Phys., 112, 442 (2008); https://doi.org/10.1016/j.matchemphys.2008.05.071
- A. Taubert, A. Uhlmann and A. Hedderich, Eur. J. Inorg. Chem., 2765 (2009); https://doi.org/10.1002/ejic.200900093
- M. Zhang, X. Xu and M. Zhang, J. Dispers. Sci. Technol., 29, 508 (2008); https://doi.org/10.1080/01932690701728734.
- K.S. Suslick, S.-B. Choe, A.A. Cichowlas and M.W. Grinstaff, Nature, 353, 414 (1991); https://doi.org/10.1038/353414a0
- N.A. Dhas, Y. Koltypin and A. Gedanken, Chem. Mater., 9, 3159 (1997); https://doi.org/10.1021/cm9704645
- N.A. Dhas and A. Gedanken, J. Phys. Chem. B, 101, 9495 (1997); https://doi.org/10.1021/jp971385j
- A. Patra, E. Sominska, S. Ramesh, Y. Koltypin, Z. Zhong, H. Minti, R. Reisfeld and A. Gedanken, J. Phys. Chem. B, 103, 3361 (1999); https://doi.org/10.1021/jp984766l
- S. Avivi, Y. Mastai, G. Hodes and A. Gedanken, J. Am. Chem. Soc., 121, 4196 (1999); https://doi.org/10.1021/ja9835584
- R.V. Kumar, Y. Diamant and A. Gedanken, Chem. Mater., 12, 2301 (2000); https://doi.org/10.1021/cm000166z
- R. Vijaya Kumar, R. Elgamiel, Y. Diamant, A. Gedanken and J. Norwig, Langmuir, 17, 1406 (2001); https://doi.org/10.1021/la001331s
- K.S. Suslick, Ultrasound: Its Chemical, Physical and Biological Effects, VCH: Weinheim, Germany (1988).
- T. Alammar and A.V. Mudring, Mater. Lett., 63, 732 (2009); https://doi.org/10.1016/j.matlet.2008.12.035
- F. Buazar, S. Sweidi, M. Badri and F. Kroushawi, Green Process Synth., 8, 691 (2019); https://doi.org/10.1515/gps-2019-0040
- G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer and R.T. Williams, Phys. Status Solidi., C Curr. Top. Solid State Phys., 3, 3577 (2006); https://doi.org/10.1002/pssc.200672164
- B.M. Marsh, J. Zhou and E. Garand, RSC Adv., 5, 1790 (2015); https://doi.org/10.1039/C4RA09655J
References
S.L. Richards, B.D. Byrd, M.H. Reiskind and A.V. White, Environ. Health Insights, 14, (2020); https://doi.org/10.1177/1178630220952790
D.R.J. Pleydell and J. Bouyer, Commun. Biol., 2, 201 (2019); https://doi.org/10.1038/s42003-019-0451-1
G. Benelli, Parasitol. Res., 114, 2801 (2015); https://doi.org/10.1007/s00436-015-4586-9
M.S. Fradin and J.F. Day, N. Engl. J. Med., 347, 13 (2002); https://doi.org/10.1056/NEJMoa011699
J. Talapko, I. Škrlec, T. Alebic, M. Jukic and A. Vcev, Microorganisms, 7, 179 (2019); https://doi.org/10.3390/microorganisms7060179
L. Bernhard, P. Bernhard and P. Magnussen, Physiotherapy, 89, 743 (2003); https://doi.org/10.1016/S0031-9406(05)60500-7
C. Burda, X. Chen, R. Narayanan and M.A. El-Sayed, Chem. Rev., 105, 1025 (2005); https://doi.org/10.1021/cr030063a
P.B. Chouke, T. Shrirame, A.K. Potbhare, A. Mondal, A.R. Chaudhary, S. Mondal, S.R. Thakare, E. Nepovimova, M. Valis, K. Kuca, R. Sharma and R.G. Chaudhary, Mater. Today Advan., 16, 100314 (2022); https://doi.org/10.1016/j.mtadv.2022.100314
A. Hagfeldt and M. Graetzel, Chem. Rev., 95, 49 (1995); https://doi.org/10.1021/cr00033a003
H.M. Xiao, S.Y. Fu, L.P. Zhu, Y.Q. Li and G. Yang, Eur. J. Inorg. Chem., 1966 (2007); https://doi.org/10.1002/ejic.200601029
M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang and C.W. Chu, Phys. Rev. Lett., 58, 908 (1987); https://doi.org/10.1103/PhysRevLett.58.908
Y.Y. Xu, D.R. Chen and X.L. Jiao, J. Phys. Chem. B, 109, 13561 (2005); https://doi.org/10.1021/jp051577b
A. Chowdhuri, V. Gupta, K. Sreenivas, R. Kumar, S. Mozumdar and P.K. Patanjali, Appl. Phys. Lett., 84, 1180 (2004); https://doi.org/10.1063/1.1646760
J.B. Reitz and E.I.J. Solomon, J. Am. Chem. Soc., 120, 11467 (1998); https://doi.org/10.1021/ja981579s
L. Rout, S. Jammi and T. Punniyamurthy, Org. Lett., 9, 3397 (2007); https://doi.org/10.1021/ol0713887
S. Pande, A. Saha, S. Jana, S. Sarkar, M. Basu, M. Pradhan, A.K. Sinha, S. Saha, A. Pal and T. Pal, Org. Lett., 10, 5179 (2008); https://doi.org/10.1021/ol802040x
Y. Chang and H.C. Zeng, Cryst. Growth Des., 4, 397 (2004); https://doi.org/10.1021/cg034127m
A.A. Eliseev, A.V. Lukashin, A.A. Vertegel, L.I. Heifets, A.I. Zhirov and Y.D. Tretyakov, Mater. Res. Innov., 3, 308 (2000); https://doi.org/10.1007/PL00010877
J.F. Xu, W. Ji, Z.X. Shen, S.H. Tang, X.R. Ye, D.Z. Jia and X.Q. Xin, J. Solid State Chem., 147, 516 (1999); https://doi.org/10.1006/jssc.1999.8409
W. Wang, Y. Zhan and G. Wang, Chem. Commun., 727 (2001); https://doi.org/10.1039/b008215p
S. Nakao, M. Ikeyama, T. Mizota, P. Jin, M. Tazawa, Y. Miyagawa, S. Miyagawa, S. Wang and L. Wang, Rep. Res. Cent. Ion Beam Technol. Hosei Univ., 18(Suppl.), 153 (2000).
K. Borgohain, J.B. Singh, M.V. Rama Rao, T. Shripathi and S. Mahamuni, Phys. Rev. B Condens. Matter, 61, 11093 (2000); https://doi.org/10.1103/PhysRevB.61.11093
H. Wang, J.Z. Xu, J.J. Zhu and H.Y. Chen, J. Cryst. Growth, 244, 88 (2002); https://doi.org/10.1016/S0022-0248(02)01571-3
X.D. Xu, M. Zhang, J. Feng and M.L. Zhang, Mater. Lett., 62, 2787 (2008); https://doi.org/10.1016/j.matlet.2008.01.046
A. Henglein, Chem. Rev., 89, 1861 (1989); https://doi.org/10.1021/cr00098a010
J.Q. Yu, Z. Xu and D.Z. Jia, Chin. J. Funct. Mater. Instrum, 5, 267 (1999).
A. Galembeck and O.L. Alves, Synth. Met., 102, 1238 (1999); https://doi.org/10.1016/S0379-6779(98)01439-8
Y. Cudennec and A. Lecerf, Solid State Sci., 5, 1471 (2003); https://doi.org/10.1016/j.solidstatesciences.2003.09.009
C.H. Lu, L.M. Qi, J.H. Yang, D.H. Zhang, N.Z. Wu and J.M. Ma, J. Phys. Chem. B, 108, 17825 (2004); https://doi.org/10.1021/jp046772p
L.X. Yang, Y.J. Zhu, H. Tong, L. Li and L. Zhang, Mater. Chem. Phys., 112, 442 (2008); https://doi.org/10.1016/j.matchemphys.2008.05.071
A. Taubert, A. Uhlmann and A. Hedderich, Eur. J. Inorg. Chem., 2765 (2009); https://doi.org/10.1002/ejic.200900093
M. Zhang, X. Xu and M. Zhang, J. Dispers. Sci. Technol., 29, 508 (2008); https://doi.org/10.1080/01932690701728734.
K.S. Suslick, S.-B. Choe, A.A. Cichowlas and M.W. Grinstaff, Nature, 353, 414 (1991); https://doi.org/10.1038/353414a0
N.A. Dhas, Y. Koltypin and A. Gedanken, Chem. Mater., 9, 3159 (1997); https://doi.org/10.1021/cm9704645
N.A. Dhas and A. Gedanken, J. Phys. Chem. B, 101, 9495 (1997); https://doi.org/10.1021/jp971385j
A. Patra, E. Sominska, S. Ramesh, Y. Koltypin, Z. Zhong, H. Minti, R. Reisfeld and A. Gedanken, J. Phys. Chem. B, 103, 3361 (1999); https://doi.org/10.1021/jp984766l
S. Avivi, Y. Mastai, G. Hodes and A. Gedanken, J. Am. Chem. Soc., 121, 4196 (1999); https://doi.org/10.1021/ja9835584
R.V. Kumar, Y. Diamant and A. Gedanken, Chem. Mater., 12, 2301 (2000); https://doi.org/10.1021/cm000166z
R. Vijaya Kumar, R. Elgamiel, Y. Diamant, A. Gedanken and J. Norwig, Langmuir, 17, 1406 (2001); https://doi.org/10.1021/la001331s
K.S. Suslick, Ultrasound: Its Chemical, Physical and Biological Effects, VCH: Weinheim, Germany (1988).
T. Alammar and A.V. Mudring, Mater. Lett., 63, 732 (2009); https://doi.org/10.1016/j.matlet.2008.12.035
F. Buazar, S. Sweidi, M. Badri and F. Kroushawi, Green Process Synth., 8, 691 (2019); https://doi.org/10.1515/gps-2019-0040
G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer and R.T. Williams, Phys. Status Solidi., C Curr. Top. Solid State Phys., 3, 3577 (2006); https://doi.org/10.1002/pssc.200672164
B.M. Marsh, J. Zhou and E. Garand, RSC Adv., 5, 1790 (2015); https://doi.org/10.1039/C4RA09655J