Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Series of Low Band Gap Small Organic Molecules and Evaluation of their Solar Cell Activity
Asian Journal of Chemistry,
Vol. 28 No. 10 (2016): Vol 28 Issue 10
Abstract
Organic solar cells have attracted much attention in the recent years but still in search of devices with efficiency comparable to that of silicon solar cells. In this view, a series of highly conjugated imidazolinone molecules were synthesized by a simple in situ coupling method, which resulted in high yield (85-95 %) of the products compared to the traditional method of synthesis. UV-visible studies performed in varying solvents differing in polarity, showing shift in their spectra with change in polarity. The band gap calculated thereafter ranged between 2.8-3.1 eV showing their potential for use in photovoltaic cell. Studies of the I-V characteristics of the photovoltaic devices fabricated with the newly synthesized molecules were performed. The devices with naphthalene substituent showed the highest power conversion efficiency of 0.1 % compared to others, thereby opening up room for use in organic solar cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I.S.E. Fraunhofer, Sci. Daily, 6 (2014).
- B. O' Regan and M. Gratzel, Nature, 353, 737 (1991); doi:10.1038/353737a0.
- S. Günes, H. Neugebauer and N.S. Sariciftci, Chem. Rev., 107, 1324 (2007); doi:10.1021/cr050149z.
- C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia and S.P. Williams, Adv. Mater., 22, 3839 (2010); doi:10.1002/adma.200903697.
- S. Izawa, K. Hashimoto and K. Tajima, Chem. Commun., 47, 6365 (2011); doi:10.1039/c1cc11387a.
- C.W. Tang, Appl. Phys. Lett., 48, 183 (1986); doi:10.1063/1.96937.
- H. Spanggaard and F.C. Krebs, Sol. Energy Mater. Sol. Cells, 83, 125 (2004); doi:10.1016/j.solmat.2004.02.021.
- K. Cnops, B.P. Rand, D. Cheyns, B. Verreet, M.A. Empl and P. Heremans, Nat. Commun., 5, 3406 (2014); doi:10.1038/ncomms4406.
- C.C. Chen, W.-H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong and Y. Yang, Adv. Mater., 26, 5670 (2014); doi:10.1002/adma.201402072.
- V. Jain, G. Bhattacharjya, A. Tej, C.K. Suman, R. Gurunath and S.S.K. Iyer, In Proceedings of Asian Symposium on Information Display (ASID), New Delhi, India, pp. 244–247 (2006).
- A.I. Vogel, Vogel’s Textbook of Practical Organic Chemistry, Longman, New York, edn 5 (1989).
- G. Bhattacharjya, S.S. Agasti and G. Ramanathan, ARKIVOC, 152 (2006); doi:10.3998/ark.5550190.0007.a18.
References
I.S.E. Fraunhofer, Sci. Daily, 6 (2014).
B. O' Regan and M. Gratzel, Nature, 353, 737 (1991); doi:10.1038/353737a0.
S. Günes, H. Neugebauer and N.S. Sariciftci, Chem. Rev., 107, 1324 (2007); doi:10.1021/cr050149z.
C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia and S.P. Williams, Adv. Mater., 22, 3839 (2010); doi:10.1002/adma.200903697.
S. Izawa, K. Hashimoto and K. Tajima, Chem. Commun., 47, 6365 (2011); doi:10.1039/c1cc11387a.
C.W. Tang, Appl. Phys. Lett., 48, 183 (1986); doi:10.1063/1.96937.
H. Spanggaard and F.C. Krebs, Sol. Energy Mater. Sol. Cells, 83, 125 (2004); doi:10.1016/j.solmat.2004.02.021.
K. Cnops, B.P. Rand, D. Cheyns, B. Verreet, M.A. Empl and P. Heremans, Nat. Commun., 5, 3406 (2014); doi:10.1038/ncomms4406.
C.C. Chen, W.-H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong and Y. Yang, Adv. Mater., 26, 5670 (2014); doi:10.1002/adma.201402072.
V. Jain, G. Bhattacharjya, A. Tej, C.K. Suman, R. Gurunath and S.S.K. Iyer, In Proceedings of Asian Symposium on Information Display (ASID), New Delhi, India, pp. 244–247 (2006).
A.I. Vogel, Vogel’s Textbook of Practical Organic Chemistry, Longman, New York, edn 5 (1989).
G. Bhattacharjya, S.S. Agasti and G. Ramanathan, ARKIVOC, 152 (2006); doi:10.3998/ark.5550190.0007.a18.