This work is licensed under a Creative Commons Attribution 4.0 International License.
Mixed Ligand Complexes of Cobalt(II): Synthesis, Reactivity, Physico-Chemical and Spectroscopic Studies
Corresponding Author(s) : Arijit Das
Asian Journal of Chemistry,
Vol. 35 No. 4 (2023): Vol 35 Issue 4, 2023
Abstract
The mixed ligand complexes of Co(II) metal ions with some heterocyclic nitrogen bases along with 1-cyano-1-carboethoxyethylene-2,2-dithiolate ion (CED2−) of the compositions, Co(N-N)(CED)·2H2O [N-N = o-phen/2,2′-bipy] and Co(N-N)(CED)L2 [N-N = o-phen/2,2′-bipy, CED2– = 1-cyano-1-carboethoxyethylene-2,2-dithiolate, L = γ-picoline (γ-pic), β-picoline (β-pic), α-picoline (α-pic), pyridine (py)] were characterized and isolated by analytical data as well as physico-chemical methods for example infrared spectroscopy, electronic, magnetic susceptibility, molar conductance. The complexes are soluble in coordinating solvents like DMSO and DMF and decompose below 250 ºC. The synthesized complexes in DMF solution are non-electrolytic as shown by their molar conductance data. The calculated magnetic moments suggest that the synthesixed cobalt(II) compounds are paramagnetic and produce a low-spin environment for the Co(II) ion. Thermal studies reveal that Co(N-N) contains two coordinated water molecules (CED)·2H2O. Electronic spectra of cobalt(II) complexes with mixed ligands in DMF solution are consistent with distorted octahedral stereochemistry. The IR studies indicates that the CED2- ion exhibits bidentate chelating behaviour and that heterocyclic nitrogen donors coordinate to Co atoms (II). Reaction with heterocyclic nitrogen donors (γ-picoline, β-picoline, α-picoline, pyridine) signifying the ligand exchange reaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Campbell and S. Harris, Inorg. Chem., 35, 3285 (1996); https://doi.org/10.1021/ic9513907
- A.C. Cerdeira, M.L. Afonso, I.C. Santos, L.C.J. Pereira, J.T. Coutinho, S. Rabaça, D. Simão, R.T. Henriques and M. Almeida, Polyhedron, 44, 228 (2012); https://doi.org/10.1016/j.poly.2012.07.010
- P. Herich, M. Fronc and J. Kocšek, Acta Crystallogr. C Struct. Chem., 71(Pt 2), 159 (2015); https://doi.org/10.1107/S2053229615001436
- V.K. Jain, A. Wadawale, N.P. Kushwah and M.K. Pal, J. Chem. Sci., 123, 107 (2011); https://doi.org/10.1007/s12039-011-0104-5
- H.-B. Zhao, Y.-Q. Qiu, C.-G. Liu, S.-L. Sun, Y. Liu and R.-S. Wang, J. Organomet. Chem., 695, 2251 (2010); https://doi.org/10.1016/j.jorganchem.2010.06.014
- A. Islam, H. Sugihara, K. Hara, L.P. Singh, R. Katoh, M. Yanagida, Y. Takahashi, S. Murata, H. Arakawa and G. Fujihashi, Inorg. Chem., 40, 5371 (2001); https://doi.org/10.1021/ic010391y
- P.J. Nieuwenhuizen, A.W. Ehlers, J.G. Haasnoot, S.R. Janse, J. Reedijk and E.J. Baerends, J. Am. Chem. Soc., 121, 163 (1999); https://doi.org/10.1021/ja982217n
- P.J. Nieuwenhuizen, S. Timal, J.G. Haasnoot, A.L. Spek and J. Reedijk, Chem. Eur. J., 3, 1846 (1997); https://doi.org/10.1002/chem.19970031117
- P. O’Brien, J.R. Walsh, I.M. Watson, M. Motevalli and L. Henriksen, J. Chem. Soc., Dalton Trans., 2491 (1996); https://doi.org/10.1039/dt9960002491
- P. O’Brien, J.R. Walsh, I.M. Watson, L. Hart and S.R.P. Silva, J. Cryst. Growth, 167, 133 (1996); https://doi.org/10.1016/0022-0248(96)00225-4
- R.D. Pike, H. Cui, R. Kershaw, K. Dwight, A. Wold, T.N. Blanton, A.A. Wernberg and H.J. Gysling, Thin Solid Films, 224, 221 (1993); https://doi.org/10.1016/0040-6090(93)90436-S
- J.M. Pollard, J.S. Reboucas, A. Durazo, I. Kos, F. Fike, M. Panni, E.B. Gralla, J.S. Valentine, I. Batinic-Haberle and R.A. Gatti, Free Radic. Biol. Med., 47, 250 (2009); https://doi.org/10.1016/j.freeradbiomed.2009.04.018
- M.K. Singh, S. Sutradhar, B. Paul, D. Barman and A. Das, J. Indian Chern. Soc., 90, 163 (2013).
- N. Singh, N.K. Singh and P.P. Agrawal, Transition Met. Chem., 15, 325 (1990); https://doi.org/10.1007/BF01061942
- R.C. Aggarwal and R. Mitra, Indian J. Chem., 33A, 55 (1994).
- N.K. Singh, P.P. Agrawal and N. Singh, Synth. React. Inorg. Met.-Org. Chem., 21, 541 (1991); https://doi.org/10.1080/15533179108016824
- V. Abram, W. Dietzsch and R. Kirmse, Z. Chem., 22, 305 (1982); https://doi.org/10.1002/zfch.19820220810
- J.A. McCleverty, D.G. Orchard and K. Smith, J. Chem. Soc. A, 707 (1971); https://doi.org/10.1039/j19710000707
- M.K. Singh, A. Das and B. Paul, J. Coord. Chem., 62, 2745 (2009); https://doi.org/10.1080/00958970902870894
- B.N. Figgis and J. Lewis, eds.: J. Lewis and R.G. Wilkinson, Modern Coordination Chemistry, Interscience: New York (1960).
- K.A. Jensen, L.A.R.S. Henriksen, O.B. Weeks, U. Schwieter and J. Paasivirta, Acta Chem. Scand., 22, 1107 (1968); https://doi.org/10.3891/acta.chem.scand.22-1107
- A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, ELBS and Longmans: London, Edn. 3 (1961).
- A. Earnshaw, Introduction to Magnetochemistry, Academic Press: London (1968).
- A.V. Nikolov, V.A. Logvineenko and L.T. Myachina, Thermal Analysis, vol. 2, Academic Press: New York (1969).
- W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
- F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, Advanced Inorganic Chemistry, John Wiley & Sons: New York, Edn. 5, pp. 702-750 (1988).
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier Publishing Company: New York, p. 318 (1968).
- F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, Advanced Inorganic Chemistry, John Wiley & Sons, Inc.: New York, Edn. 6, p. 820 (1999).
- M. Azam, I. Warad, S. Al-Resayes, M. Zahin, I. Ahmad and M. Shakir, Z. Anorg. Allg. Chem., 638, 881 (2012); https://doi.org/10.1002/zaac.201100561
- H.H. Alkam, K.M. Kanan and C.C. Hadjikostas, Polyhedron, 24, 2944 (2005); https://doi.org/10.1016/j.poly.2005.06.043
- M.L. Caffery and D. Coucouvanis, J. Inorg. Nucl. Chem., 37, 2081 (1975); https://doi.org/10.1016/0022-1902(75)80834-7
- R.A. Lal, M.L. Pal and S. Adhikari, Synth. React. Inorg. Met.-Org. Chem., 26, 997 (1996); https://doi.org/10.1080/00945719608004348
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley-Interscience, New York, Edn. 3 (1978).
- G.N. Schrauzer and V.P. Mayweg, J. Am. Chem. Soc., 87, 3585 (1965); https://doi.org/10.1021/ja01094a011
References
S. Campbell and S. Harris, Inorg. Chem., 35, 3285 (1996); https://doi.org/10.1021/ic9513907
A.C. Cerdeira, M.L. Afonso, I.C. Santos, L.C.J. Pereira, J.T. Coutinho, S. Rabaça, D. Simão, R.T. Henriques and M. Almeida, Polyhedron, 44, 228 (2012); https://doi.org/10.1016/j.poly.2012.07.010
P. Herich, M. Fronc and J. Kocšek, Acta Crystallogr. C Struct. Chem., 71(Pt 2), 159 (2015); https://doi.org/10.1107/S2053229615001436
V.K. Jain, A. Wadawale, N.P. Kushwah and M.K. Pal, J. Chem. Sci., 123, 107 (2011); https://doi.org/10.1007/s12039-011-0104-5
H.-B. Zhao, Y.-Q. Qiu, C.-G. Liu, S.-L. Sun, Y. Liu and R.-S. Wang, J. Organomet. Chem., 695, 2251 (2010); https://doi.org/10.1016/j.jorganchem.2010.06.014
A. Islam, H. Sugihara, K. Hara, L.P. Singh, R. Katoh, M. Yanagida, Y. Takahashi, S. Murata, H. Arakawa and G. Fujihashi, Inorg. Chem., 40, 5371 (2001); https://doi.org/10.1021/ic010391y
P.J. Nieuwenhuizen, A.W. Ehlers, J.G. Haasnoot, S.R. Janse, J. Reedijk and E.J. Baerends, J. Am. Chem. Soc., 121, 163 (1999); https://doi.org/10.1021/ja982217n
P.J. Nieuwenhuizen, S. Timal, J.G. Haasnoot, A.L. Spek and J. Reedijk, Chem. Eur. J., 3, 1846 (1997); https://doi.org/10.1002/chem.19970031117
P. O’Brien, J.R. Walsh, I.M. Watson, M. Motevalli and L. Henriksen, J. Chem. Soc., Dalton Trans., 2491 (1996); https://doi.org/10.1039/dt9960002491
P. O’Brien, J.R. Walsh, I.M. Watson, L. Hart and S.R.P. Silva, J. Cryst. Growth, 167, 133 (1996); https://doi.org/10.1016/0022-0248(96)00225-4
R.D. Pike, H. Cui, R. Kershaw, K. Dwight, A. Wold, T.N. Blanton, A.A. Wernberg and H.J. Gysling, Thin Solid Films, 224, 221 (1993); https://doi.org/10.1016/0040-6090(93)90436-S
J.M. Pollard, J.S. Reboucas, A. Durazo, I. Kos, F. Fike, M. Panni, E.B. Gralla, J.S. Valentine, I. Batinic-Haberle and R.A. Gatti, Free Radic. Biol. Med., 47, 250 (2009); https://doi.org/10.1016/j.freeradbiomed.2009.04.018
M.K. Singh, S. Sutradhar, B. Paul, D. Barman and A. Das, J. Indian Chern. Soc., 90, 163 (2013).
N. Singh, N.K. Singh and P.P. Agrawal, Transition Met. Chem., 15, 325 (1990); https://doi.org/10.1007/BF01061942
R.C. Aggarwal and R. Mitra, Indian J. Chem., 33A, 55 (1994).
N.K. Singh, P.P. Agrawal and N. Singh, Synth. React. Inorg. Met.-Org. Chem., 21, 541 (1991); https://doi.org/10.1080/15533179108016824
V. Abram, W. Dietzsch and R. Kirmse, Z. Chem., 22, 305 (1982); https://doi.org/10.1002/zfch.19820220810
J.A. McCleverty, D.G. Orchard and K. Smith, J. Chem. Soc. A, 707 (1971); https://doi.org/10.1039/j19710000707
M.K. Singh, A. Das and B. Paul, J. Coord. Chem., 62, 2745 (2009); https://doi.org/10.1080/00958970902870894
B.N. Figgis and J. Lewis, eds.: J. Lewis and R.G. Wilkinson, Modern Coordination Chemistry, Interscience: New York (1960).
K.A. Jensen, L.A.R.S. Henriksen, O.B. Weeks, U. Schwieter and J. Paasivirta, Acta Chem. Scand., 22, 1107 (1968); https://doi.org/10.3891/acta.chem.scand.22-1107
A.I. Vogel, A Text Book of Quantitative Inorganic Analysis, ELBS and Longmans: London, Edn. 3 (1961).
A. Earnshaw, Introduction to Magnetochemistry, Academic Press: London (1968).
A.V. Nikolov, V.A. Logvineenko and L.T. Myachina, Thermal Analysis, vol. 2, Academic Press: New York (1969).
W.J. Geary, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, Advanced Inorganic Chemistry, John Wiley & Sons: New York, Edn. 5, pp. 702-750 (1988).
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier Publishing Company: New York, p. 318 (1968).
F.A. Cotton, G. Wilkinson, C.A. Murillo and M. Bochmann, Advanced Inorganic Chemistry, John Wiley & Sons, Inc.: New York, Edn. 6, p. 820 (1999).
M. Azam, I. Warad, S. Al-Resayes, M. Zahin, I. Ahmad and M. Shakir, Z. Anorg. Allg. Chem., 638, 881 (2012); https://doi.org/10.1002/zaac.201100561
H.H. Alkam, K.M. Kanan and C.C. Hadjikostas, Polyhedron, 24, 2944 (2005); https://doi.org/10.1016/j.poly.2005.06.043
M.L. Caffery and D. Coucouvanis, J. Inorg. Nucl. Chem., 37, 2081 (1975); https://doi.org/10.1016/0022-1902(75)80834-7
R.A. Lal, M.L. Pal and S. Adhikari, Synth. React. Inorg. Met.-Org. Chem., 26, 997 (1996); https://doi.org/10.1080/00945719608004348
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley-Interscience, New York, Edn. 3 (1978).
G.N. Schrauzer and V.P. Mayweg, J. Am. Chem. Soc., 87, 3585 (1965); https://doi.org/10.1021/ja01094a011