This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Combination of Tween-80 with Amphiphilic Peptides on Physical Stability of Nanoemulsion Using Low-Energy Emulsification Technique
Corresponding Author(s) : Rajeev Kumar
Asian Journal of Chemistry,
Vol. 35 No. 4 (2023): Vol 35 Issue 4, 2023
Abstract
The current study was investigated to replace Tween-80 with peptides in order to produce physical and microstructure stability of nanoemulsion. Oil phase (2%), Tween-80 (4%) and remaining aqueous phase were taken to form nanoemulsions. In combinations of Tween-80 and peptides three ratios (1:2, 2:1 and 1:1) were taken keeping the overall concentration 4% fixed. The particle size of nanoemulsion stabilized with Tween-80, peptides and combination of Tween-80-peptides (1:2, 1:1, 2:1) were 148.71 ± 1.48, 283.66 ± 10.17, 254.50 ± 14.77, 161.90 ± 3.67, 182.80 ± 5.37 nm, showing smallest particle size with 50% replacement of Tween-80 with peptides. The zeta potential data showed competitive adsorption between Tween-80 and peptides. The polydispersity index of Tween-80:peptides (1:1) had found to be 0.33 ± 0.01 where as Tween-80 and peptides stabilized nanoemulsion had 0.20 ± 0.01 and 0.30 ± 0.05. The changes in electrical conductivity occurred maximum in case of peptides and electrical conductivity decreased with increase in concentration of Tween-80 due to preventing mobility of ions. The storage stability of nanoemulsions were found better at 4 ºC, however Tween-80:peptides (1:1) and peptides stabilized nanoemulsion had particle size growth onwards 14 days at 37 ºC. The transmission electron microscopy (TEM) image of nanoemulsion Tween-80:peptides (1:1) showed uniform distribution of peptides in combination compared with individual peptides stabilized nanoemulsion.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.J. McClements, Food Emulsions: Principles, Practices and Techniques, CRC Press (2015).
- S.N. Kale and S.L. Deore, Syst. Rev. Pharm., 8, 39 (2017); https://doi.org/10.5530/srp.2017.1.8
- D.J. McClements and J. Rao, Crit. Rev. Food Sci. Nutr., 51, 285 (2011); https://doi.org/10.1080/10408398.2011.559558
- D.J. McClements and C.E. Gumus, Adv. Colloid Interface Sci., 234, 3 (2016); https://doi.org/10.1016/j.cis.2016.03.002
- H.R. Sharif, P.A. Williams, M.K. Sharif, S. Abbas, H. Majeed, K.G. Masamba, W. Safdar and F. Zhong, Food Hydrocoll., 76, 2 (2018); https://doi.org/10.1016/j.foodhyd.2017.01.002
- E.A. Foegeding, J.P. Davis, D. Doucet and M.K. McGuffey, Trends Food Sci. Technol., 13, 151 (2002); https://doi.org/10.1016/S0924-2244(02)00111-5
- J. O’Regan and D.M. Mulvihill, Food Chem., 123, 21 (2010); https://doi.org/10.1016/j.foodchem.2010.03.115
- S. Tirok, I. Scherze and G. Muschiolik, Colloids Surf. B Biointerfaces, 21, 149 (2001); https://doi.org/10.1016/S0927-7765(01)00168-0
- A. Gomes, A.L.R. Costa and R.L. Cunha, Colloids Surf. B Biointerfaces, 164, 272 (2018); https://doi.org/10.1016/j.colsurfb.2018.01.032
- D. Su and Q. Zhong, J. Food Eng., 171, 214 (2016); https://doi.org/10.1016/j.jfoodeng.2015.10.040
- Q. Zhao, C. Wu, C. Yu, A. Bi, X. Xu and M. Du, Food Chem., 340, 127877 (2021); https://doi.org/10.1016/j.foodchem.2020.127877
- N. Walia, S. Zhang, W. Wismer and L. Chen, Food Hydrocoll. Health, 2, 100078 (2022); https://doi.org/10.1016/j.fhfh.2022.100078
- M. Saito, M. Ogasawara, K. Chikuni and M. Shimizu, Biosci. Biotechnol. Biochem., 59, 388 (1995); https://doi.org/10.1271/bbb.59.388
- Y. Li, Z. Zhang, Q. Yuan, H. Liang and F. Vriesekoop, J. Food Eng., 119, 419 (2013); https://doi.org/10.1016/j.jfoodeng.2013.06.001
- J. Feng, Z. Wang, Z. Zhang, J. Wang and F. Liu, Colloids Surf. A Physicochem. Eng. Asp., 339, 1 (2009); https://doi.org/10.1016/j.colsurfa.2009.01.002
- C. Arancibia, N. Riquelme, R. Zúniga and S. Matiacevich, Innov. Food Sci. Emerg. Technol., 44, 159 (2017); https://doi.org/10.1016/j.ifset.2017.06.009
- P. Ma, Q. Zeng, K. Tai, X. He, Y. Yao, X. Hong and F. Yuan, J. Food Sci. Technol., 55, 3485 (2018); https://doi.org/10.1007/s13197-018-3273-0
- P.J. Wilde, A.R. Mackie, F. Husband, P.A. Gunning and V.J. Morris, Adv. Colloid Interface Sci., 63, 108 (2004); https://doi.org/10.1016/j.cis.2003.10.011
- C.S. Kotsmar, V. Pradines, V.S. Alahverdjieva, E.V. Aksenenko, V.B. Fainerman, V.I. Kovalchuk, J. Krägel, M.E. Leser, B.A. Noskov and R. Miller, Adv. Colloid Interface Sci., 150, 41 (2009); https://doi.org/10.1016/j.cis.2009.05.002
- X. Sui, S. Bi, B. Qi, Z. Wang, M. Zhang, Y. Li and L. Jiang, Food Hydrocoll., 63, 727 (2017); https://doi.org/10.1016/j.foodhyd.2016.10.024
- S. Roohinejad, R. Greiner, I. Oey and J. Wen, Emulsion-based Systems for Delivery of Food Active Compounds: Formation, Application. Health and Safety, Wiley, Chap. 1 (2018).
- M.-H. Wu, H.H. Yan, Z.-Q. Chen and M. He, J. Dispers. Sci. Technol., 38, 1375 (2017); https://doi.org/10.1080/01932691.2016.1227713
- G. Vladisavljevic and H. Schubert, J. Membr. Sci., 225, 15 (2003); https://doi.org/10.1016/S0376-7388(03)00212-6
- S. Mayer, J. Weiss and D.J. McClements, J. Colloid Interface Sci., 402, 122 (2013); https://doi.org/10.1016/j.jcis.2013.04.016
- B. Subbiah and K.R. Morison, J. Food Eng., 237, 177 (2018); https://doi.org/10.1016/j.jfoodeng.2018.05.037
- D.J. McClements, Soft Matter, 7, 2297 (2011); https://doi.org/10.1039/C0SM00549E
- Y. Cheng, J. Chen and Y.L. Xiong, J. Agric. Food Chem., 62, 11575 (2014); https://doi.org/10.1021/jf5038135
References
D.J. McClements, Food Emulsions: Principles, Practices and Techniques, CRC Press (2015).
S.N. Kale and S.L. Deore, Syst. Rev. Pharm., 8, 39 (2017); https://doi.org/10.5530/srp.2017.1.8
D.J. McClements and J. Rao, Crit. Rev. Food Sci. Nutr., 51, 285 (2011); https://doi.org/10.1080/10408398.2011.559558
D.J. McClements and C.E. Gumus, Adv. Colloid Interface Sci., 234, 3 (2016); https://doi.org/10.1016/j.cis.2016.03.002
H.R. Sharif, P.A. Williams, M.K. Sharif, S. Abbas, H. Majeed, K.G. Masamba, W. Safdar and F. Zhong, Food Hydrocoll., 76, 2 (2018); https://doi.org/10.1016/j.foodhyd.2017.01.002
E.A. Foegeding, J.P. Davis, D. Doucet and M.K. McGuffey, Trends Food Sci. Technol., 13, 151 (2002); https://doi.org/10.1016/S0924-2244(02)00111-5
J. O’Regan and D.M. Mulvihill, Food Chem., 123, 21 (2010); https://doi.org/10.1016/j.foodchem.2010.03.115
S. Tirok, I. Scherze and G. Muschiolik, Colloids Surf. B Biointerfaces, 21, 149 (2001); https://doi.org/10.1016/S0927-7765(01)00168-0
A. Gomes, A.L.R. Costa and R.L. Cunha, Colloids Surf. B Biointerfaces, 164, 272 (2018); https://doi.org/10.1016/j.colsurfb.2018.01.032
D. Su and Q. Zhong, J. Food Eng., 171, 214 (2016); https://doi.org/10.1016/j.jfoodeng.2015.10.040
Q. Zhao, C. Wu, C. Yu, A. Bi, X. Xu and M. Du, Food Chem., 340, 127877 (2021); https://doi.org/10.1016/j.foodchem.2020.127877
N. Walia, S. Zhang, W. Wismer and L. Chen, Food Hydrocoll. Health, 2, 100078 (2022); https://doi.org/10.1016/j.fhfh.2022.100078
M. Saito, M. Ogasawara, K. Chikuni and M. Shimizu, Biosci. Biotechnol. Biochem., 59, 388 (1995); https://doi.org/10.1271/bbb.59.388
Y. Li, Z. Zhang, Q. Yuan, H. Liang and F. Vriesekoop, J. Food Eng., 119, 419 (2013); https://doi.org/10.1016/j.jfoodeng.2013.06.001
J. Feng, Z. Wang, Z. Zhang, J. Wang and F. Liu, Colloids Surf. A Physicochem. Eng. Asp., 339, 1 (2009); https://doi.org/10.1016/j.colsurfa.2009.01.002
C. Arancibia, N. Riquelme, R. Zúniga and S. Matiacevich, Innov. Food Sci. Emerg. Technol., 44, 159 (2017); https://doi.org/10.1016/j.ifset.2017.06.009
P. Ma, Q. Zeng, K. Tai, X. He, Y. Yao, X. Hong and F. Yuan, J. Food Sci. Technol., 55, 3485 (2018); https://doi.org/10.1007/s13197-018-3273-0
P.J. Wilde, A.R. Mackie, F. Husband, P.A. Gunning and V.J. Morris, Adv. Colloid Interface Sci., 63, 108 (2004); https://doi.org/10.1016/j.cis.2003.10.011
C.S. Kotsmar, V. Pradines, V.S. Alahverdjieva, E.V. Aksenenko, V.B. Fainerman, V.I. Kovalchuk, J. Krägel, M.E. Leser, B.A. Noskov and R. Miller, Adv. Colloid Interface Sci., 150, 41 (2009); https://doi.org/10.1016/j.cis.2009.05.002
X. Sui, S. Bi, B. Qi, Z. Wang, M. Zhang, Y. Li and L. Jiang, Food Hydrocoll., 63, 727 (2017); https://doi.org/10.1016/j.foodhyd.2016.10.024
S. Roohinejad, R. Greiner, I. Oey and J. Wen, Emulsion-based Systems for Delivery of Food Active Compounds: Formation, Application. Health and Safety, Wiley, Chap. 1 (2018).
M.-H. Wu, H.H. Yan, Z.-Q. Chen and M. He, J. Dispers. Sci. Technol., 38, 1375 (2017); https://doi.org/10.1080/01932691.2016.1227713
G. Vladisavljevic and H. Schubert, J. Membr. Sci., 225, 15 (2003); https://doi.org/10.1016/S0376-7388(03)00212-6
S. Mayer, J. Weiss and D.J. McClements, J. Colloid Interface Sci., 402, 122 (2013); https://doi.org/10.1016/j.jcis.2013.04.016
B. Subbiah and K.R. Morison, J. Food Eng., 237, 177 (2018); https://doi.org/10.1016/j.jfoodeng.2018.05.037
D.J. McClements, Soft Matter, 7, 2297 (2011); https://doi.org/10.1039/C0SM00549E
Y. Cheng, J. Chen and Y.L. Xiong, J. Agric. Food Chem., 62, 11575 (2014); https://doi.org/10.1021/jf5038135