This work is licensed under a Creative Commons Attribution 4.0 International License.
Design, Synthesis of 5-(2-Methylbenzofuran)-2-aryl-2H-tetrazole Derivatives via Cross-Coupling of N-H Free Tetrazoles with Boronic Acids
Corresponding Author(s) : Chitneni Prasad Rao
Asian Journal of Chemistry,
Vol. 35 No. 8 (2023): Vol 35 Issue 8, 2023
Abstract
Chemical intermediates derived from 1,3-dipolar cycloaddition reactions, such as 5-substituted 1H-tetrazole, are commonly utilized to synthesize 1,5-disubstituted tetrazoles. In this work, a highly effective and useful strategy for the synthesis of 5-(2-methylbenzofuran-3-yl)-2-phenyl-2H-tetrazoles using environmentally safe 1 atm. O2 as oxidizer is reported. Moreover, the N-H unbound tetrazoles and low hazardous boronic acids are directly coupled with the catalytic amount (5 mol%) of Cu2O to form C-N bond without any formation of the additives. The proposed method is simple for the Cu-catalyzed reactions, which require only mild conditions and green, atom-efficient chemistry for the regioselective synthesis of 2,5-disubstituted 2H-tetrazoles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.R. Katritzky, C.A. Ramsden, E.F.V. Scriven and R.J.K. Taylor, Comprehensive Heterocyclic Chemistry III, Elsevier, pp. 1–15 (2010).
- K.C. Majumdar and S.K. Chattopadhyay, Heterocycles in Natural Product Synthesis, Wiley-VCH (2011).
- R.J. Nevagi, S.N. Dighe and S.N. Dighe, Eur. J. Med. Chem., 97, 561 (2015); https://doi.org/10.1016/j.ejmech.2014.10.085
- P.C. Stevenson, M.S.J. Simmonds, M.A. Yule, N.C. Veitch, G.C. Kite, D. Irwin and M. Legg, Phytochemistry, 63, 41 (2003); https://doi.org/10.1016/S0031-9422(02)00748-3
- H. Tanaka, T. Oh-Uchi, H. Etoh, M. Sako, M. Sato, T. Fukai and Y. Tateishi, Phytochemistry, 63, 597 (2003); https://doi.org/10.1016/S0031-9422(03)00184-5
- Z. Ali, T. Tanaka, I. Iliya, M. Iinuma, M. Furusawa, T. Ito, K.-I. Nakaya, J. Murata and D. Darnaedi, J. Nat. Prod., 66, 558 (2003); https://doi.org/10.1021/np020532o
- A.H. Banskota, Y. Tezuka, K. Midorikawa, K. Matsushige and S. Kadota, J. Nat. Prod., 63, 1277 (2000); https://doi.org/10.1021/np000143z
- T. Okui, T. Shimo, N.M.M. Hassan, T. Fukazawa, N. Kurio, M. Takaoka, Y. Naomoto and A. Sasaki, Anticancer Res., 31, 1197 (2011).
- A. Carella, V. Roviello, R. Iannitti, R. Palumbo, S. La Manna, D. Marasco, M. Trifuoggi, R. Diana and G.N. Roviello, Int. J. Biol. Macromol., 121, 77 (2019); https://doi.org/10.1016/j.ijbiomac.2018.09.153
- E. Ezzatzadeh and Z. Hossaini, Nat. Prod. Res., 34, 923 (2020); https://doi.org/10.1080/14786419.2018.1542389
- M. Koca, S. Servi, C. Kirilmis, M. Ahmedzade, C. Kazaz, B. Ozbek and G. Otuk, Eur. J. Med. Chem., 40, 1351 (2005); https://doi.org/10.1016/j.ejmech.2005.07.004
- S.M.H. Sanad, D.H. Hanna and A.E.M. Mekky, J. Mol. Struct., 1188, 214 (2019); https://doi.org/10.1016/j.molstruc.2019.03.088
- G.K. Rao, K.N. Venugopala and P.S. Pai, J. Pharmacol. Toxicol, 2, 481 (2007); https://doi.org/10.3923/jpt.2007.481.488
- K.M. Dawood, H. Abdel-Gawad, E.A. Rageb, M. Ellithey and H.A. Mohamed, Bioorg. Med. Chem., 14, 3672 (2006); https://doi.org/10.1016/j.bmc.2006.01.033
- B. Adalat, F. Rahim, M. Taha, S. Hayat, N. Iqbal, Z. Ali, S.A.A. Shah, A. Wadood, A.U. Rehman and K.M. Khan, J. Mol. Struct., 1265, 133287 (2022); https://doi.org/10.1016/j.molstruc.2022.133287
- K. Tsujihara, M. Hongu, K. Saito, H. Kawanishi, K. Kuriyama, A. Oku, M. Matsumoto, K. Ueta, M. Tsuda and A. Saito, J. Med. Chem., 42, 5311 (1999); https://doi.org/10.1021/jm990175n
- L. Pieters, S. Van Dyck, M. Gao, R. Bai, E. Hamel, A. Vlietinck and G. Lemière, J. Med. Chem., 42, 5475 (1999); https://doi.org/10.1021/jm990251m
- Y. Liao, A.P. Kozikowski, A. Guidotti and E. Costa, Bioorg. Med. Chem. Lett., 8, 2099 (1998); https://doi.org/10.1016/S0960-894X(98)00374-6
- J.V. Patil, S. Umar, R. Soni, S.S. Soman and S. Balakrishnan, Synth. Commun., 53, 217 (2023); https://doi.org/10.1080/00397911.2022.2160648
- V.K. Kumar, V.S. Puli, K.R.S. Prasad and G. Sridhar, Chem. Data Coll., 36, 100787 (2021); https://doi.org/10.1016/j.cdc.2021.100787
- I.S. Murthy, R. Sireesha, K. Deepti, P.S. Rao and R.R. Raju, Chem. Data Coll., 31, 100608 (2021); https://doi.org/10.1016/j.cdc.2020.100608
- Y. Zou, J. Heterocycl. Chem., 57, 510 (2020); https://doi.org/10.1002/jhet.3795
- A. Radadiya and A. Shah, Eur. J. Med. Chem., 97, 356 (2015); https://doi.org/10.1016/j.ejmech.2015.01.021
- B. Tahmasbi and A. Ghorbani-Choghamarani, Appl. Organomet. Chem., 31, e3644 (2017); https://doi.org/10.1002/aoc.3644
- P.K. Samanta, R. Biswas, T. Das, M. Nandi, B. Adhikary, R.M. Richards and P. Biswas, J. Porous Mater., 26, 145 (2019); https://doi.org/10.1007/s10934-018-0626-z
- P. Moradi, M. Hajjami and B. Tahmasbi, Polyhedron, 175, 114169 (2020); https://doi.org/10.1016/j.poly.2019.114169
- C.-X. Wei, M. Bian and G.-H. Gong, Molecules, 20, 5528 (2015); https://doi.org/10.3390/molecules20045528
- V.A. Ostrovskii, E.A. Popova and R.E. Trifonov, Developments in Tetrazole Chemistry (2009–16), In: Advances in Heterocyclic Chemistry, Elsevier, vol. 123, Chap. 1, pp. 1-62 (2017).
- D. Habibi, S. Heydari, A. Gil, M. Afsharfarnia, A. Faraji, R. Karamian and M. Asadbegy, Appl. Organomet. Chem., 32, e4005 (2017); https://doi.org/10.1002/aoc.4005
- S. Manzoor, Q. Tariq, X. Yin and J.-G. Zhang, Defence Technol., 17, 1995 (2021); https://doi.org/10.1016/j.dt.2021.02.002
- A. Jabbari, B. Tahmasbi, M. Nikoorazm and A. Ghorbani-Choghamarani, Appl. Organomet. Chem., 32, e4295 (2018); https://doi.org/10.1002/aoc.4295
- G. Azadi, A. Ghorbani-Choghamarani and L. Shiri, Transition Met. Chem., 42, 131 (2017); https://doi.org/10.1007/s11243-016-0115-7
- M. Nikoorazm, A. Ghorbani-Choghamarani, M. Ghobadi and S. Massahi, Appl. Organomet. Chem., 31, e3848 (2017); https://doi.org/10.1002/aoc.3848
- N. Moeini, T. Tamoradi, M. Ghadermazi and A. Ghorbani-Choghamarani, Appl. Organomet. Chem., 32, e4445 (2018); https://doi.org/10.1002/aoc.4445
- G.I. Koldobskii and V.A. Ostrovskii, Russ. Chem. Rev., 63, 847 (1994); https://doi.org/10.1070/RC1994v063n10ABEH000119
- F. Carpentier, F.-X. Felpin, F. Zammattio and E. Le Grognec, Org. Process Res. Dev., 24, 752 (2020); https://doi.org/10.1021/acs.oprd.9b00526
- Z. Hajizadeh, F. Hassanzadeh-Afruzi, D.F. Jelodar, M.R. Ahghari and A. Maleki, RSC Adv., 10, 26467 (2020); https://doi.org/10.1039/D0RA04772D
- C. Gao, L. Chang, Z. Xu, X.-F. Yan, C. Ding, F. Zhao, X. Wu and L.-S. Feng, Eur. J. Med. Chem., 163, 404 (2019); https://doi.org/10.1016/j.ejmech.2018.12.001
- J. Zhang, S. Wang, Y. Ba and Z. Xu, Eur. J. Med. Chem., 178, 341 (2019); https://doi.org/10.1016/j.ejmech.2019.05.071
- F. Gao, J. Xiao and G. Huang, Eur. J. Med. Chem., 184, 111744 (2019); https://doi.org/10.1016/j.ejmech.2019.111744
- T.-J. Zhang, Y. Zhang, S. Tu, Y.-H. Wu, Z.-H. Zhang and F.-H. Meng, Eur. J. Med. Chem., 183, 111717 (2019); https://doi.org/10.1016/j.ejmech.2019.111717
- E.A. Popova, R.E. Trifonov and V.A. Ostrovskii, Russ. Chem. Rev., 88, 644 (2019); https://doi.org/10.1070/RCR4864
- C.G. Neochoritis, T. Zhao and A. Dömling, Chem. Rev., 119, 1970 (2019); https://doi.org/10.1021/acs.chemrev.8b00564
- S.A. Hamrahian, S. Salehzadeh, J. Rakhtshah, F. Haji Babaei and N. Karami, Appl. Organomet. Chem., 33, e4723 (2019); https://doi.org/10.1002/aoc.4723
- P. Moradi and A. Ghorbani-Choghamarani, Appl. Organomet. Chem., 31, e3602 (2017); https://doi.org/10.1002/aoc.3602
- F. Rezaei, M.A. Amrollahi and R. Khalifeh, Inorg. Chim. Acta, 489, 8 (2019); https://doi.org/10.1016/j.ica.2019.01.039
- P. Akbarzadeh, N. Koukabi and E. Kolvari, Res. Chem. Intermed., 45, 1009 (2019); https://doi.org/10.1007/s11164-018-3657-9
- A. Maleki, M. Niksefat, J. Rahimi and S. Azadegan, Polyhedron, 167, 103 (2019); https://doi.org/10.1016/j.poly.2019.04.015
- A. Sarvary and A. Maleki, Mol. Divers., 19, 189 (2015); https://doi.org/10.1007/s11030-014-9553-3
- A. Maleki and A. Sarvary, RSC Adv., 5, 60938 (2015); https://doi.org/10.1039/C5RA11531K
- X. Xiong, C. Yi, X. Liao and S. Lai, Tetrahedron Lett., 60, 402 (2019); https://doi.org/10.1016/j.tetlet.2018.12.037
- Z.P. Demko and K.B. Sharpless, J. Org. Chem., 66, 7945 (2001); https://doi.org/10.1021/jo010635w
- B. Salahshournia, H. Hamadi and V. Nobakht, Appl. Organomet. Chem., 32, e4416 (2018); https://doi.org/10.1002/aoc.4416
- M. Halder, M.M. Islam, P. Singh, A. Singha Roy, S.M. Islam and K. Sen, ACS Omega, 3, 8169 (2018); https://doi.org/10.1021/acsomega.8b01081
- J. Roh, K. Vávrová and A. Hrabálek, Eur. J. Org. Chem., 6101 (2012); https://doi.org/10.1002/ejoc.201200469
- P.Y.S. Lam, C.G. Clark, S. Saubern, J. Adams, M.P. Winters, D.M.T. Chan and A. Combs, Tetrahedron Lett., 39, 2941 (1998); https://doi.org/10.1016/S0040-4039(98)00504-8
- A.O. King and N. Yasuda, Top. Organomet. Chem., 6, 205 (2004); https://doi.org/10.1007/b94551
- K. Livingstone, S. Bertrand and C. Jamieson, J. Org. Chem., 85, 7413 (2020); https://doi.org/10.1021/acs.joc.0c00807
- T. Zhou and Z.-C. Chen, J. Chem. Res., 404 (2004); https://doi.org/10.3184/0308234041423655
- T. Onaka, H. Umemoto, Y. Miki, A. Nakamura and T. Maegawa, J. Org. Chem., 79, 6703 (2014); https://doi.org/10.1021/jo500862t
- S. Ito, Y. Tanaka, A. Kakehi and K.B. Kondo, Bull. Chem. Soc. Jpn., 49, 1920 (1976); https://doi.org/10.1246/bcsj.49.1920
- I.P. Beletskaya, D.V. Davydov and M.S. Gorovoy, Tetrahedron Lett., 43, 6221 (2002); https://doi.org/10.1016/S0040-4039(02)01325-4
- Y. Li, L.-X. Gao and F.-S. Han, Chem. Commun., 48, 2719 (2012); https://doi.org/10.1039/c2cc17894j
- C.-Y. Liu, Y. Li, J.-Y. Ding, D.-W. Dong and F.-S. Han, Chem. Eur. J., 20, 2373 (2014); https://doi.org/10.1002/chem.201302857
References
A.R. Katritzky, C.A. Ramsden, E.F.V. Scriven and R.J.K. Taylor, Comprehensive Heterocyclic Chemistry III, Elsevier, pp. 1–15 (2010).
K.C. Majumdar and S.K. Chattopadhyay, Heterocycles in Natural Product Synthesis, Wiley-VCH (2011).
R.J. Nevagi, S.N. Dighe and S.N. Dighe, Eur. J. Med. Chem., 97, 561 (2015); https://doi.org/10.1016/j.ejmech.2014.10.085
P.C. Stevenson, M.S.J. Simmonds, M.A. Yule, N.C. Veitch, G.C. Kite, D. Irwin and M. Legg, Phytochemistry, 63, 41 (2003); https://doi.org/10.1016/S0031-9422(02)00748-3
H. Tanaka, T. Oh-Uchi, H. Etoh, M. Sako, M. Sato, T. Fukai and Y. Tateishi, Phytochemistry, 63, 597 (2003); https://doi.org/10.1016/S0031-9422(03)00184-5
Z. Ali, T. Tanaka, I. Iliya, M. Iinuma, M. Furusawa, T. Ito, K.-I. Nakaya, J. Murata and D. Darnaedi, J. Nat. Prod., 66, 558 (2003); https://doi.org/10.1021/np020532o
A.H. Banskota, Y. Tezuka, K. Midorikawa, K. Matsushige and S. Kadota, J. Nat. Prod., 63, 1277 (2000); https://doi.org/10.1021/np000143z
T. Okui, T. Shimo, N.M.M. Hassan, T. Fukazawa, N. Kurio, M. Takaoka, Y. Naomoto and A. Sasaki, Anticancer Res., 31, 1197 (2011).
A. Carella, V. Roviello, R. Iannitti, R. Palumbo, S. La Manna, D. Marasco, M. Trifuoggi, R. Diana and G.N. Roviello, Int. J. Biol. Macromol., 121, 77 (2019); https://doi.org/10.1016/j.ijbiomac.2018.09.153
E. Ezzatzadeh and Z. Hossaini, Nat. Prod. Res., 34, 923 (2020); https://doi.org/10.1080/14786419.2018.1542389
M. Koca, S. Servi, C. Kirilmis, M. Ahmedzade, C. Kazaz, B. Ozbek and G. Otuk, Eur. J. Med. Chem., 40, 1351 (2005); https://doi.org/10.1016/j.ejmech.2005.07.004
S.M.H. Sanad, D.H. Hanna and A.E.M. Mekky, J. Mol. Struct., 1188, 214 (2019); https://doi.org/10.1016/j.molstruc.2019.03.088
G.K. Rao, K.N. Venugopala and P.S. Pai, J. Pharmacol. Toxicol, 2, 481 (2007); https://doi.org/10.3923/jpt.2007.481.488
K.M. Dawood, H. Abdel-Gawad, E.A. Rageb, M. Ellithey and H.A. Mohamed, Bioorg. Med. Chem., 14, 3672 (2006); https://doi.org/10.1016/j.bmc.2006.01.033
B. Adalat, F. Rahim, M. Taha, S. Hayat, N. Iqbal, Z. Ali, S.A.A. Shah, A. Wadood, A.U. Rehman and K.M. Khan, J. Mol. Struct., 1265, 133287 (2022); https://doi.org/10.1016/j.molstruc.2022.133287
K. Tsujihara, M. Hongu, K. Saito, H. Kawanishi, K. Kuriyama, A. Oku, M. Matsumoto, K. Ueta, M. Tsuda and A. Saito, J. Med. Chem., 42, 5311 (1999); https://doi.org/10.1021/jm990175n
L. Pieters, S. Van Dyck, M. Gao, R. Bai, E. Hamel, A. Vlietinck and G. Lemière, J. Med. Chem., 42, 5475 (1999); https://doi.org/10.1021/jm990251m
Y. Liao, A.P. Kozikowski, A. Guidotti and E. Costa, Bioorg. Med. Chem. Lett., 8, 2099 (1998); https://doi.org/10.1016/S0960-894X(98)00374-6
J.V. Patil, S. Umar, R. Soni, S.S. Soman and S. Balakrishnan, Synth. Commun., 53, 217 (2023); https://doi.org/10.1080/00397911.2022.2160648
V.K. Kumar, V.S. Puli, K.R.S. Prasad and G. Sridhar, Chem. Data Coll., 36, 100787 (2021); https://doi.org/10.1016/j.cdc.2021.100787
I.S. Murthy, R. Sireesha, K. Deepti, P.S. Rao and R.R. Raju, Chem. Data Coll., 31, 100608 (2021); https://doi.org/10.1016/j.cdc.2020.100608
Y. Zou, J. Heterocycl. Chem., 57, 510 (2020); https://doi.org/10.1002/jhet.3795
A. Radadiya and A. Shah, Eur. J. Med. Chem., 97, 356 (2015); https://doi.org/10.1016/j.ejmech.2015.01.021
B. Tahmasbi and A. Ghorbani-Choghamarani, Appl. Organomet. Chem., 31, e3644 (2017); https://doi.org/10.1002/aoc.3644
P.K. Samanta, R. Biswas, T. Das, M. Nandi, B. Adhikary, R.M. Richards and P. Biswas, J. Porous Mater., 26, 145 (2019); https://doi.org/10.1007/s10934-018-0626-z
P. Moradi, M. Hajjami and B. Tahmasbi, Polyhedron, 175, 114169 (2020); https://doi.org/10.1016/j.poly.2019.114169
C.-X. Wei, M. Bian and G.-H. Gong, Molecules, 20, 5528 (2015); https://doi.org/10.3390/molecules20045528
V.A. Ostrovskii, E.A. Popova and R.E. Trifonov, Developments in Tetrazole Chemistry (2009–16), In: Advances in Heterocyclic Chemistry, Elsevier, vol. 123, Chap. 1, pp. 1-62 (2017).
D. Habibi, S. Heydari, A. Gil, M. Afsharfarnia, A. Faraji, R. Karamian and M. Asadbegy, Appl. Organomet. Chem., 32, e4005 (2017); https://doi.org/10.1002/aoc.4005
S. Manzoor, Q. Tariq, X. Yin and J.-G. Zhang, Defence Technol., 17, 1995 (2021); https://doi.org/10.1016/j.dt.2021.02.002
A. Jabbari, B. Tahmasbi, M. Nikoorazm and A. Ghorbani-Choghamarani, Appl. Organomet. Chem., 32, e4295 (2018); https://doi.org/10.1002/aoc.4295
G. Azadi, A. Ghorbani-Choghamarani and L. Shiri, Transition Met. Chem., 42, 131 (2017); https://doi.org/10.1007/s11243-016-0115-7
M. Nikoorazm, A. Ghorbani-Choghamarani, M. Ghobadi and S. Massahi, Appl. Organomet. Chem., 31, e3848 (2017); https://doi.org/10.1002/aoc.3848
N. Moeini, T. Tamoradi, M. Ghadermazi and A. Ghorbani-Choghamarani, Appl. Organomet. Chem., 32, e4445 (2018); https://doi.org/10.1002/aoc.4445
G.I. Koldobskii and V.A. Ostrovskii, Russ. Chem. Rev., 63, 847 (1994); https://doi.org/10.1070/RC1994v063n10ABEH000119
F. Carpentier, F.-X. Felpin, F. Zammattio and E. Le Grognec, Org. Process Res. Dev., 24, 752 (2020); https://doi.org/10.1021/acs.oprd.9b00526
Z. Hajizadeh, F. Hassanzadeh-Afruzi, D.F. Jelodar, M.R. Ahghari and A. Maleki, RSC Adv., 10, 26467 (2020); https://doi.org/10.1039/D0RA04772D
C. Gao, L. Chang, Z. Xu, X.-F. Yan, C. Ding, F. Zhao, X. Wu and L.-S. Feng, Eur. J. Med. Chem., 163, 404 (2019); https://doi.org/10.1016/j.ejmech.2018.12.001
J. Zhang, S. Wang, Y. Ba and Z. Xu, Eur. J. Med. Chem., 178, 341 (2019); https://doi.org/10.1016/j.ejmech.2019.05.071
F. Gao, J. Xiao and G. Huang, Eur. J. Med. Chem., 184, 111744 (2019); https://doi.org/10.1016/j.ejmech.2019.111744
T.-J. Zhang, Y. Zhang, S. Tu, Y.-H. Wu, Z.-H. Zhang and F.-H. Meng, Eur. J. Med. Chem., 183, 111717 (2019); https://doi.org/10.1016/j.ejmech.2019.111717
E.A. Popova, R.E. Trifonov and V.A. Ostrovskii, Russ. Chem. Rev., 88, 644 (2019); https://doi.org/10.1070/RCR4864
C.G. Neochoritis, T. Zhao and A. Dömling, Chem. Rev., 119, 1970 (2019); https://doi.org/10.1021/acs.chemrev.8b00564
S.A. Hamrahian, S. Salehzadeh, J. Rakhtshah, F. Haji Babaei and N. Karami, Appl. Organomet. Chem., 33, e4723 (2019); https://doi.org/10.1002/aoc.4723
P. Moradi and A. Ghorbani-Choghamarani, Appl. Organomet. Chem., 31, e3602 (2017); https://doi.org/10.1002/aoc.3602
F. Rezaei, M.A. Amrollahi and R. Khalifeh, Inorg. Chim. Acta, 489, 8 (2019); https://doi.org/10.1016/j.ica.2019.01.039
P. Akbarzadeh, N. Koukabi and E. Kolvari, Res. Chem. Intermed., 45, 1009 (2019); https://doi.org/10.1007/s11164-018-3657-9
A. Maleki, M. Niksefat, J. Rahimi and S. Azadegan, Polyhedron, 167, 103 (2019); https://doi.org/10.1016/j.poly.2019.04.015
A. Sarvary and A. Maleki, Mol. Divers., 19, 189 (2015); https://doi.org/10.1007/s11030-014-9553-3
A. Maleki and A. Sarvary, RSC Adv., 5, 60938 (2015); https://doi.org/10.1039/C5RA11531K
X. Xiong, C. Yi, X. Liao and S. Lai, Tetrahedron Lett., 60, 402 (2019); https://doi.org/10.1016/j.tetlet.2018.12.037
Z.P. Demko and K.B. Sharpless, J. Org. Chem., 66, 7945 (2001); https://doi.org/10.1021/jo010635w
B. Salahshournia, H. Hamadi and V. Nobakht, Appl. Organomet. Chem., 32, e4416 (2018); https://doi.org/10.1002/aoc.4416
M. Halder, M.M. Islam, P. Singh, A. Singha Roy, S.M. Islam and K. Sen, ACS Omega, 3, 8169 (2018); https://doi.org/10.1021/acsomega.8b01081
J. Roh, K. Vávrová and A. Hrabálek, Eur. J. Org. Chem., 6101 (2012); https://doi.org/10.1002/ejoc.201200469
P.Y.S. Lam, C.G. Clark, S. Saubern, J. Adams, M.P. Winters, D.M.T. Chan and A. Combs, Tetrahedron Lett., 39, 2941 (1998); https://doi.org/10.1016/S0040-4039(98)00504-8
A.O. King and N. Yasuda, Top. Organomet. Chem., 6, 205 (2004); https://doi.org/10.1007/b94551
K. Livingstone, S. Bertrand and C. Jamieson, J. Org. Chem., 85, 7413 (2020); https://doi.org/10.1021/acs.joc.0c00807
T. Zhou and Z.-C. Chen, J. Chem. Res., 404 (2004); https://doi.org/10.3184/0308234041423655
T. Onaka, H. Umemoto, Y. Miki, A. Nakamura and T. Maegawa, J. Org. Chem., 79, 6703 (2014); https://doi.org/10.1021/jo500862t
S. Ito, Y. Tanaka, A. Kakehi and K.B. Kondo, Bull. Chem. Soc. Jpn., 49, 1920 (1976); https://doi.org/10.1246/bcsj.49.1920
I.P. Beletskaya, D.V. Davydov and M.S. Gorovoy, Tetrahedron Lett., 43, 6221 (2002); https://doi.org/10.1016/S0040-4039(02)01325-4
Y. Li, L.-X. Gao and F.-S. Han, Chem. Commun., 48, 2719 (2012); https://doi.org/10.1039/c2cc17894j
C.-Y. Liu, Y. Li, J.-Y. Ding, D.-W. Dong and F.-S. Han, Chem. Eur. J., 20, 2373 (2014); https://doi.org/10.1002/chem.201302857