This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Spectral and Theoretical Characterization and Antimicrobial and Cytotoxic Studies of Some Transition Metal Complexes of 4-[(2E)-2-Benzylidenehydrazinyl]-7H-pyrrolo[2,3-d]pyrimidine
Corresponding Author(s) : Sushilkumar Dhanmane
Asian Journal of Chemistry,
Vol. 35 No. 8 (2023): Vol 35 Issue 8, 2023
Abstract
Present work describes the synthesis and characterization of complexes of 4-[(2E)-2-benzylidenehydrazinyl]-7H-pyrrolo[2,3-d]pyrimidine with Fe(II), Mn(II), Co(II), Ni(II), Pd(II), Zn(II), Cu(II), Cd(II) and Hg(II). The results of the elemental and spectroscopic analyses suggest a 1:2 metal-ligand ratio, [ML2]. The electronic spectra and magnetic moments of the metal(II) complexes suggest that Fe(II), Mn(II), Co(II) and Ni(II) complexes are in an octahedral geometry, while Pd(II) in a square planar ligand geometry. In contrast, the Cu(II), Zn(II), Cd(II) and Hg(II) are in tetrahedral geometry. The conductance measurements in nitrobenzene suggest the non-electrolytic nature of all the metal-coordination compounds. The tested biological species viz. Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Bacillus cereus, Proteus mirabilis, Klebsiella oxytoca, Aspergillus niger, A. flavus and Rhizopus stolonifer exhibited the moderate to strong antimicrobial activity. At 10 mg/mL concentration in nitrobenzene, cobalt(II) complex is observed to be a more promising antimicrobial than any other metal(II) complexes synthesized. The antioxidant potential of the synthesized metal(II) compounds was also evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and shows the high DPPH radical scavenging activity. The nickel complex had the highest DPPH radical scavenging activity compared to the other metal(II) complexes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Li, C. Qian, Y. Li, Y. Yang, D. Lin, X. Liu and C. Chen, J. Inorg. Biochem., 218, 111405 (2021); https://doi.org/10.1016/j.jinorgbio.2021.111405
- D. Majumdar, T. pal, D.K. Singh, D.K. Pandey, D. Parai, K. Bankura and D. Mishra, J. Mol. Struct., 1209, 127936 (2020); https://doi.org/10.1016/j.molstruc.2020.127936
- A. Upadhyay, P.K. Kar and S. Dash, Spectrochim. Acta A Mol. Biomol. Spectrosc., 233, 118231 (2020); https://doi.org/10.1016/j.saa.2020.118231
- M.G. Ferraro, M. Piccolo, G. Misso, R. Santamaria and C. Irace, Pharmaceutics, 14, 954 (2022); https://doi.org/10.3390/pharmaceutics14050954
- C. Freire, M. Nunes, C. Pereira, D.M. Fernandes, A.F. Peixoto and M. Rocha, Coord. Chem. Rev., 394, 104 (2019); https://doi.org/10.1016/j.ccr.2019.05.014
- V. Sharma, N. Chitranshi and A.K. Agarwal, Int. J. Med. Chem., 2014, 202784 (2014); https://doi.org/10.1155/2014/202784
- S. Wilhelm, C. Carter, M. Lynch, T. Lowinger, J. Dumas, R.A. Smith, B. Schwartz, R. Simantov and S. Kelley, Nat. Rev. Drug Discov., 5, 835 (2006); https://doi.org/10.1038/nrd2130
- T.O. Ajiboye, B.O. Oluwarinde, P.K. Montso, C.N. Ateba and D.C. Onwudiwe, Results Chem., 3, 100241 (2021); https://doi.org/10.1016/j.rechem.2021.100241
- A.A. Abu-Hashem and S.A. Al-Hussain, Molecules, 27, 835 (2022); https://doi.org/10.3390/molecules27030835
- J.P. James, V. Devaraji, P. Sasidharan and T.S. Pavan, Polycycl. Aromat. Compd., (2022); https://doi.org/10.1080/10406638.2022.2135545
- M. Gulcan, S. Özdemir, A. Dündar, E. Ispir and M. Kurtoglu, Z. Anorg. Allg. Chem., 640, 1754 (2014); https://doi.org/10.1002/zaac.201400078
- P. Wadhwa, P. Jain, S. Rudrawar and H.R.A. Jadhav, Curr. Drug Discov. Technol., 15, 2 (2018); https://doi.org/10.2174/1570163814666170531115452
- S.G. Nayak, B. Poojary and V. Kamat, Arch. Pharm., 353, 2000103 (2020); https://doi.org/10.1002/ardp.202000103
- W.B. Parker, Chem. Rev., 109, 2880 (2009); https://doi.org/10.1021/cr900028p
- S. Kumar, S.M. Lim, K. Ramasamy, M. Vasudevan, S.A.A. Shah, M. Selvaraj and B. Narasimhan, Chem. Cent. J., 11, 89 (2017); https://doi.org/10.1186/s13065-017-0322-0
- N. Revathi, M. Sankarganesh, J. Rajesh and J.D. Raja, J. Fluoresc., 27, 1801 (2017); https://doi.org/10.1007/s10895-017-2118-y
- M. Stolarczyk, A. Wolska, A. Mikolajczyk, I. Bryndal, J. Cieplik, T. Lis and A. Matera-Witkiewicz, Molecules, 26, 2296 (2021); https://doi.org/10.3390/molecules26082296
- S. Hatse, E. De Clercq and J Balzarini, Biochem. Pharmacol., 58, 539 (1999); https://doi.org/10.1016/s0006-2952(99)00035-0
- A.M. Teale, T. Helgaker, A. Savin, C. Adamo, A.V. Arbuznikov, B. Aradi, P.W. Ayers, E.J. Baerends, V. Barone, P. Calaminici, E. Cancès, E.A. Carter, P.K. Chattaraj, H. Chermette, I. Ciofini, T.D. Crawford, F. De Proft, J.F. Dobson, C. Draxl, T. Frauenheim, E. Fromager, P. Fuentealba, L. Gagliardi, G. Galli, J. Gao, P. Geerlings, N. Gidopoulos, P.M.W. Gill, P. Gori-Giorgi, A. Görling, T. Gould, S. Grimme, O. Gritsenko, H.J.A. Jensen, E.R. Johnson, R.O. Jones, M. Kaupp, A.M. Köster, L. Kronik, A.I. Krylov, S. Kvaal, A. Laestadius, M. Levy, M. Lewin, S. Liu, P.-F. Loos, N.T. Maitra, F. Neese, J.P. Perdew, K. Pernal, P. Pernot, P. Piecuch, E. Rebolini, L. Reining, P. Romaniello, A. Ruzsinszky, D.R. Salahub, P. Schwerdtfeger, M. Scheffler, V.N. Staroverov, J. Sun, E. Tellgren, D.J. Tozer, S.B. Trickey, C.A. Ullrich, A. Vela, G. Vignale, X. Xu, T.A. Wesolowski, and W. Yang, Phys. Chem. Chem. Phys., 24, 28700 (2022); https://doi.org/10.1039/D2CP02827A
- S. Kumar, S.M. Lim, K. Ramasamy, V. Mani, S.A.A. Shah and B. Narasimhan, Chem. Centr. J., 12, 73 (2018); https://doi.org/10.1186/s13065-018-0440-3
- A.C. Ekennia, A.A. Osowole, L.O. Olasunkanmi, D.C. Onwudiwe and E.E. Ebenso, Res. Chem. Intermed., 2016, 1 (2016); https://doi.org/10.1007/s11164-016-2841-z
- A.A. Osowole, A.C. Ekennia, O.A. Benedict and H.E. Godwin, Elixir Int. J., 59, 15848 (2013).
- A.A. Osowole, A.C. Ekennia, O.O. Olubiyi and M. Olagunju, Res. Chem. Intermed., 2016, 2780 (2016); https://doi.org/10.1007/s11164-016-2780-8
- H.M. Vinusha, S.P. Kollur, H.D. Revanasiddappa, R. Ramu, P.S. Shirahatti, M.N. Nagendra Prasad, S. Chandrashekar and M. Begum, Results Chem., 1, 100012 (2019); https://doi.org/10.1016/j.rechem.2019.100012
- S.A. Aly and S.K. Fathalla, Arab. J. Chem., 13, 3735 (2020); https://doi.org/10.1016/j.arabjc.2019.12.003
- K.A. Moltved and K.P. Kepp, J. Chem. Theory Comput., 14, 3479 (2018); https://doi.org/10.1021/acs.jctc.8b00143
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT (2009).
- Y. Zhang and W.G. Chapman, Langmuir, 35, 10808 (2019); https://doi.org/10.1021/acs.langmuir.9b00514
- H. Dunning Jr. and P.J. Hay, in Eds.: H.F. Schaefer III, Methods of Electronic Structure Theory, Plenum: New York, USA, vol. 2 (1977).
- A. Annaberdiyev, G. Wang, C.A. Melton, M.C. Bennett, L. Shulenburger and L. Mitas, J. Chem. Phys., 149, 134108 (2018); https://doi.org/10.1063/1.5040472
- S.J. Li, L. Gagliardi and D.G. Truhlar, J. Chem. Phys., 152, 124118 (2020); https://doi.org/10.1063/5.0003048
- C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher and S. Grimme Wire Interdiscipl. Rev.: Comput. Mol. Sci., 11, e1493 (2021); https://doi.org/10.1002/wcms.1493
- N. Raman, S. Ravichandran and C. Thangaraja, J. Chem. Sci., 116, 215 (2004); https://doi.org/10.1007/BF02708270
- A.A. Osowole and E.J. Akpan, Eur. J. Appl. Sci., 4, 14 (2012).
- F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley Eastern: New Delhi (1978).
- F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, Wiley Eastern Limited: New Delhi, Edn. 3 (1972).
- J.J. Scepaniak, T.D. Harris, C.S. Vogel, J. Sutter, K. Meyer and J.M. Smith, J. Am. Chem. Soc., 2016, 1 (2016); https://doi.org/10.1021/ja2003473
- A.Z. ElSonbati, W.H. Mahmoud, G.G. Mohamed, M.A. Diab, S.M. Morgan and S.Y. Abbas, Appl. Organomet. Chem., 33, e5048 (2019); https://doi.org/10.1002/aoc.5048
- S. Cesar, P. Maria and T. Cristian, Turk. J. Chem., 32, 487 (2008).
- M.H.N. De Zoysa, H. Rathnayake, R.P. Hewawasam and W.M.D.G.B. Wijayaratne, Int. J. Microbiol., 2019, 7431439 (2019); https://doi.org/10.1155/2019/7431439
- O. Pawar, A. Patekar, A. Khan, L. Kathawate, S. Haram, G. Markad, V. Puranik and S. Salunke-Gawali, J. Mol. Struct., 116, 215 (2004); https://doi.org/10.1016/j.molstruc.2013.11.029
- A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam Edn. 4 (1980).
- A.A. Al-Amiery, A.A.H. Kadhum and A.B. Mohamad, Bioinorg. Chem. Appl., 2012, 795812 (2012); https://doi.org/10.1155/2012/795812
- Z. Kartal and O. Sahin, J. Mol. Struct., 1252, 132088 (2022); https://doi.org/10.1016/j.molstruc.2021.132088
- K. Sathya, P. Dhamodharan and M. Dhandapani, J. Mol. Struct., 1137, 663 (2017); https://doi.org/10.1016/j.molstruc.2017.02.070
- Z. Huang, Z. Lin and J.A. Huang, Eur. J. Med. Chem., 36, 863 (2001); https://doi.org/10.1016/S0223-5234(01)01285-5
- M.N. Patel, H.N. Joshi and C.R. Patel, Polyhedron, 40, 159 (2012); https://doi.org/10.1016/j.poly.2012.03.050
- T.D. Thangadurai and K. Natarajan, Transition Met. Chem., 26, 500 (2001); https://doi.org/10.1023/A:1011099517420
- S. Rafique, M. Idrees, A. Nasim, H. Kabar and A. Athar, Biotechnol. Mol. Biol. Rev., 5, 38 (2010).
- M.A. Neelakantan, F. Rusalraj, J. Dharmaraja, S. Johnsonraja, M.S. Pillai and T. Jeyakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 71, 1599 (2008); https://doi.org/10.1016/j.saa.2008.06.008
- K.M. Atmaram and V.M. Kirian, Int. J. Chem. Technol. Res., 3, 477 (2001).
- K. Ramana, A. Kumar, G.P. Raghavendra, V. Srilalitha, G.S. Narayana and L.K. Ravindranath, Chem. Bull. Pol. Univ. (Timisoara), 57, 7 (2012).
- M.S. Masoud, D.A. Ghareeb and S.S. Ahmed, J. Mol. Struct., 1137, 634 (2017); https://doi.org/10.1016/j.molstruc.2017.01.086
- D. Karaagaç, G.S. Kürkçüoglu, M. Senyel and O. Sahin, J. Mol. Struct., 1136, 281 (2017); https://doi.org/10.1016/j.molstruc.2017.02.013
- A. Fatima, A. Ali, S. Shabbir, M. Khan, M. Mehkoom, S.M. Afzal, M. Ahmad, K. Althubeiti, N. Siddiqui, M. Singh and S. Javed, J. Mol. Struct., 1261, 132791 (2022); https://doi.org/10.1016/j.molstruc.2022.132791
- G.S. Kürkçüoglu, O.Z. Yesilel, E. Sayin and O. Sahin, J. Coord. Chem., 75, 1352 (2022). https://doi.org/10.1080/00958972.2022.2096449
- S.V. Sapozhnikov, A.E. Sabirova, N.V. Shtyrlin, M.N. Agafonova, A.Y. Druk, M.N. Chirkova, R.R. Kazakova, D.Y. Grishaev, T.V. Nikishova, E.S. Krylova, E.V. Nikitina, A.R. Kayumov and Y.G. Shtyrlin, Eur. J. Med. Chem., 211, 113100 (2021); https://doi.org/10.1016/j.ejmech.2020.113100
- J. Mendham, R.C. Denney, J.D. Barnes and M. Thomas, Vogel’s Textbook of Quantitative Chemical Analysis, Pearson Education: London, Edn. 6 (2000).
References
Y. Li, C. Qian, Y. Li, Y. Yang, D. Lin, X. Liu and C. Chen, J. Inorg. Biochem., 218, 111405 (2021); https://doi.org/10.1016/j.jinorgbio.2021.111405
D. Majumdar, T. pal, D.K. Singh, D.K. Pandey, D. Parai, K. Bankura and D. Mishra, J. Mol. Struct., 1209, 127936 (2020); https://doi.org/10.1016/j.molstruc.2020.127936
A. Upadhyay, P.K. Kar and S. Dash, Spectrochim. Acta A Mol. Biomol. Spectrosc., 233, 118231 (2020); https://doi.org/10.1016/j.saa.2020.118231
M.G. Ferraro, M. Piccolo, G. Misso, R. Santamaria and C. Irace, Pharmaceutics, 14, 954 (2022); https://doi.org/10.3390/pharmaceutics14050954
C. Freire, M. Nunes, C. Pereira, D.M. Fernandes, A.F. Peixoto and M. Rocha, Coord. Chem. Rev., 394, 104 (2019); https://doi.org/10.1016/j.ccr.2019.05.014
V. Sharma, N. Chitranshi and A.K. Agarwal, Int. J. Med. Chem., 2014, 202784 (2014); https://doi.org/10.1155/2014/202784
S. Wilhelm, C. Carter, M. Lynch, T. Lowinger, J. Dumas, R.A. Smith, B. Schwartz, R. Simantov and S. Kelley, Nat. Rev. Drug Discov., 5, 835 (2006); https://doi.org/10.1038/nrd2130
T.O. Ajiboye, B.O. Oluwarinde, P.K. Montso, C.N. Ateba and D.C. Onwudiwe, Results Chem., 3, 100241 (2021); https://doi.org/10.1016/j.rechem.2021.100241
A.A. Abu-Hashem and S.A. Al-Hussain, Molecules, 27, 835 (2022); https://doi.org/10.3390/molecules27030835
J.P. James, V. Devaraji, P. Sasidharan and T.S. Pavan, Polycycl. Aromat. Compd., (2022); https://doi.org/10.1080/10406638.2022.2135545
M. Gulcan, S. Özdemir, A. Dündar, E. Ispir and M. Kurtoglu, Z. Anorg. Allg. Chem., 640, 1754 (2014); https://doi.org/10.1002/zaac.201400078
P. Wadhwa, P. Jain, S. Rudrawar and H.R.A. Jadhav, Curr. Drug Discov. Technol., 15, 2 (2018); https://doi.org/10.2174/1570163814666170531115452
S.G. Nayak, B. Poojary and V. Kamat, Arch. Pharm., 353, 2000103 (2020); https://doi.org/10.1002/ardp.202000103
W.B. Parker, Chem. Rev., 109, 2880 (2009); https://doi.org/10.1021/cr900028p
S. Kumar, S.M. Lim, K. Ramasamy, M. Vasudevan, S.A.A. Shah, M. Selvaraj and B. Narasimhan, Chem. Cent. J., 11, 89 (2017); https://doi.org/10.1186/s13065-017-0322-0
N. Revathi, M. Sankarganesh, J. Rajesh and J.D. Raja, J. Fluoresc., 27, 1801 (2017); https://doi.org/10.1007/s10895-017-2118-y
M. Stolarczyk, A. Wolska, A. Mikolajczyk, I. Bryndal, J. Cieplik, T. Lis and A. Matera-Witkiewicz, Molecules, 26, 2296 (2021); https://doi.org/10.3390/molecules26082296
S. Hatse, E. De Clercq and J Balzarini, Biochem. Pharmacol., 58, 539 (1999); https://doi.org/10.1016/s0006-2952(99)00035-0
A.M. Teale, T. Helgaker, A. Savin, C. Adamo, A.V. Arbuznikov, B. Aradi, P.W. Ayers, E.J. Baerends, V. Barone, P. Calaminici, E. Cancès, E.A. Carter, P.K. Chattaraj, H. Chermette, I. Ciofini, T.D. Crawford, F. De Proft, J.F. Dobson, C. Draxl, T. Frauenheim, E. Fromager, P. Fuentealba, L. Gagliardi, G. Galli, J. Gao, P. Geerlings, N. Gidopoulos, P.M.W. Gill, P. Gori-Giorgi, A. Görling, T. Gould, S. Grimme, O. Gritsenko, H.J.A. Jensen, E.R. Johnson, R.O. Jones, M. Kaupp, A.M. Köster, L. Kronik, A.I. Krylov, S. Kvaal, A. Laestadius, M. Levy, M. Lewin, S. Liu, P.-F. Loos, N.T. Maitra, F. Neese, J.P. Perdew, K. Pernal, P. Pernot, P. Piecuch, E. Rebolini, L. Reining, P. Romaniello, A. Ruzsinszky, D.R. Salahub, P. Schwerdtfeger, M. Scheffler, V.N. Staroverov, J. Sun, E. Tellgren, D.J. Tozer, S.B. Trickey, C.A. Ullrich, A. Vela, G. Vignale, X. Xu, T.A. Wesolowski, and W. Yang, Phys. Chem. Chem. Phys., 24, 28700 (2022); https://doi.org/10.1039/D2CP02827A
S. Kumar, S.M. Lim, K. Ramasamy, V. Mani, S.A.A. Shah and B. Narasimhan, Chem. Centr. J., 12, 73 (2018); https://doi.org/10.1186/s13065-018-0440-3
A.C. Ekennia, A.A. Osowole, L.O. Olasunkanmi, D.C. Onwudiwe and E.E. Ebenso, Res. Chem. Intermed., 2016, 1 (2016); https://doi.org/10.1007/s11164-016-2841-z
A.A. Osowole, A.C. Ekennia, O.A. Benedict and H.E. Godwin, Elixir Int. J., 59, 15848 (2013).
A.A. Osowole, A.C. Ekennia, O.O. Olubiyi and M. Olagunju, Res. Chem. Intermed., 2016, 2780 (2016); https://doi.org/10.1007/s11164-016-2780-8
H.M. Vinusha, S.P. Kollur, H.D. Revanasiddappa, R. Ramu, P.S. Shirahatti, M.N. Nagendra Prasad, S. Chandrashekar and M. Begum, Results Chem., 1, 100012 (2019); https://doi.org/10.1016/j.rechem.2019.100012
S.A. Aly and S.K. Fathalla, Arab. J. Chem., 13, 3735 (2020); https://doi.org/10.1016/j.arabjc.2019.12.003
K.A. Moltved and K.P. Kepp, J. Chem. Theory Comput., 14, 3479 (2018); https://doi.org/10.1021/acs.jctc.8b00143
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT (2009).
Y. Zhang and W.G. Chapman, Langmuir, 35, 10808 (2019); https://doi.org/10.1021/acs.langmuir.9b00514
H. Dunning Jr. and P.J. Hay, in Eds.: H.F. Schaefer III, Methods of Electronic Structure Theory, Plenum: New York, USA, vol. 2 (1977).
A. Annaberdiyev, G. Wang, C.A. Melton, M.C. Bennett, L. Shulenburger and L. Mitas, J. Chem. Phys., 149, 134108 (2018); https://doi.org/10.1063/1.5040472
S.J. Li, L. Gagliardi and D.G. Truhlar, J. Chem. Phys., 152, 124118 (2020); https://doi.org/10.1063/5.0003048
C. Bannwarth, E. Caldeweyher, S. Ehlert, A. Hansen, P. Pracht, J. Seibert, S. Spicher and S. Grimme Wire Interdiscipl. Rev.: Comput. Mol. Sci., 11, e1493 (2021); https://doi.org/10.1002/wcms.1493
N. Raman, S. Ravichandran and C. Thangaraja, J. Chem. Sci., 116, 215 (2004); https://doi.org/10.1007/BF02708270
A.A. Osowole and E.J. Akpan, Eur. J. Appl. Sci., 4, 14 (2012).
F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley Eastern: New Delhi (1978).
F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, Wiley Eastern Limited: New Delhi, Edn. 3 (1972).
J.J. Scepaniak, T.D. Harris, C.S. Vogel, J. Sutter, K. Meyer and J.M. Smith, J. Am. Chem. Soc., 2016, 1 (2016); https://doi.org/10.1021/ja2003473
A.Z. ElSonbati, W.H. Mahmoud, G.G. Mohamed, M.A. Diab, S.M. Morgan and S.Y. Abbas, Appl. Organomet. Chem., 33, e5048 (2019); https://doi.org/10.1002/aoc.5048
S. Cesar, P. Maria and T. Cristian, Turk. J. Chem., 32, 487 (2008).
M.H.N. De Zoysa, H. Rathnayake, R.P. Hewawasam and W.M.D.G.B. Wijayaratne, Int. J. Microbiol., 2019, 7431439 (2019); https://doi.org/10.1155/2019/7431439
O. Pawar, A. Patekar, A. Khan, L. Kathawate, S. Haram, G. Markad, V. Puranik and S. Salunke-Gawali, J. Mol. Struct., 116, 215 (2004); https://doi.org/10.1016/j.molstruc.2013.11.029
A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier: Amsterdam Edn. 4 (1980).
A.A. Al-Amiery, A.A.H. Kadhum and A.B. Mohamad, Bioinorg. Chem. Appl., 2012, 795812 (2012); https://doi.org/10.1155/2012/795812
Z. Kartal and O. Sahin, J. Mol. Struct., 1252, 132088 (2022); https://doi.org/10.1016/j.molstruc.2021.132088
K. Sathya, P. Dhamodharan and M. Dhandapani, J. Mol. Struct., 1137, 663 (2017); https://doi.org/10.1016/j.molstruc.2017.02.070
Z. Huang, Z. Lin and J.A. Huang, Eur. J. Med. Chem., 36, 863 (2001); https://doi.org/10.1016/S0223-5234(01)01285-5
M.N. Patel, H.N. Joshi and C.R. Patel, Polyhedron, 40, 159 (2012); https://doi.org/10.1016/j.poly.2012.03.050
T.D. Thangadurai and K. Natarajan, Transition Met. Chem., 26, 500 (2001); https://doi.org/10.1023/A:1011099517420
S. Rafique, M. Idrees, A. Nasim, H. Kabar and A. Athar, Biotechnol. Mol. Biol. Rev., 5, 38 (2010).
M.A. Neelakantan, F. Rusalraj, J. Dharmaraja, S. Johnsonraja, M.S. Pillai and T. Jeyakumar, Spectrochim. Acta A Mol. Biomol. Spectrosc., 71, 1599 (2008); https://doi.org/10.1016/j.saa.2008.06.008
K.M. Atmaram and V.M. Kirian, Int. J. Chem. Technol. Res., 3, 477 (2001).
K. Ramana, A. Kumar, G.P. Raghavendra, V. Srilalitha, G.S. Narayana and L.K. Ravindranath, Chem. Bull. Pol. Univ. (Timisoara), 57, 7 (2012).
M.S. Masoud, D.A. Ghareeb and S.S. Ahmed, J. Mol. Struct., 1137, 634 (2017); https://doi.org/10.1016/j.molstruc.2017.01.086
D. Karaagaç, G.S. Kürkçüoglu, M. Senyel and O. Sahin, J. Mol. Struct., 1136, 281 (2017); https://doi.org/10.1016/j.molstruc.2017.02.013
A. Fatima, A. Ali, S. Shabbir, M. Khan, M. Mehkoom, S.M. Afzal, M. Ahmad, K. Althubeiti, N. Siddiqui, M. Singh and S. Javed, J. Mol. Struct., 1261, 132791 (2022); https://doi.org/10.1016/j.molstruc.2022.132791
G.S. Kürkçüoglu, O.Z. Yesilel, E. Sayin and O. Sahin, J. Coord. Chem., 75, 1352 (2022). https://doi.org/10.1080/00958972.2022.2096449
S.V. Sapozhnikov, A.E. Sabirova, N.V. Shtyrlin, M.N. Agafonova, A.Y. Druk, M.N. Chirkova, R.R. Kazakova, D.Y. Grishaev, T.V. Nikishova, E.S. Krylova, E.V. Nikitina, A.R. Kayumov and Y.G. Shtyrlin, Eur. J. Med. Chem., 211, 113100 (2021); https://doi.org/10.1016/j.ejmech.2020.113100
J. Mendham, R.C. Denney, J.D. Barnes and M. Thomas, Vogel’s Textbook of Quantitative Chemical Analysis, Pearson Education: London, Edn. 6 (2000).