Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cu-Zn and Cu-Ni Bimetallic Particles Fabricated Using Ascorbic Acid and Its Role in Photodegradation of Methyl Orange
Asian Journal of Chemistry,
Vol. 28 No. 10 (2016): Vol 28 Issue 10
Abstract
Chemical reduction of metal salts using ascorbic acid (vitamin C) is a new and green approach in which ascorbic acid serve dual role of reducing and capping agent. Copper, zinc and nickel salts were reduced by ascorbic acid to give bimetallic nanoparticles. SEM images highlight the aggregation of nanoparticles, which is due to the high surface energy of the particles in nano range. Bimetallic particles fabricated are in the weight ratio of 4:1. Subsequent shift of surface plasma resonance band and XRD peaks indicate that the particles are not just a physical mixture of mono metallic particles. UV-visible spectra and XRD result rule out the alloy nature of the particles. Average size of the particles were calculated using XRD data and are in nano scaled. Size of the Cu, Cu-Zn and Cu-Ni particles as calculated by using Scherrer’s equation are 43.47, 38.4 and 43.5 nm, respectively. In this work photo degradation of methyl orange has been studied to demonstrate the catalytic properties of mono and bimetallic particles. Bimetallic particles have superior catalytic application as compared to monometallic particles. These alloying of metals might have result in change of certain electronic configuration, which significantly increase the catalytic application of bimetallic nanoparticles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.S. Wang and Y. Li, Adv. Mater., 23, 1044 (2011); doi:10.1002/adma.201003695.
- B. Xia, F. He and L. Li, Langmuir, 29, 4901 (2013); doi:10.1021/la400355u.
- E. Cottancin, J. Lerme, M. Gaudry, M. Pellarin, J.L. Vialle, M. Broyer, B. Prével, M. Treilleux and P. Mélinon, Phys. Rev. B, 62, 5179 (2000); doi:10.1103/PhysRevB.62.5179.
- Y. Mizukoshi, T. Fujimoto, Y. Nagata, R. Oshima and Y. Maeda, J. Phys. Chem. B, 104, 6028 (2000); doi:10.1021/jp994255e.
- I.N. Iftikhar and P. Abida, Turk. J. Chem., 29, 627 (2005).
- Z. Komeily-Nia, M. Montazer and M. Latifi, Colloids Surf. A, 439, 167 (2013); doi:10.1016/j.colsurfa.2013.03.003.
- A. Umer, S. Naveed, N. Ramzan and M.S. Rafique, NANO Brief Reports and Reviews, 7, 1230005 (2012); doi:10.1142/S1793292012300058.
- M.L. Wu, D.L. Chen and T.C. Huang, Chem. Mater., 13, 599 (2001); doi:10.1021/cm0006502.
- N. Toshima and T. Yonezawa, New J. Chem., 22, 1179 (1998); doi:10.1039/a805753b.
- D. Lahiri, B. Bunker, B. Mishra, Z. Zhang, D. Meisel, C.M. Doudna, M.F. Bertino, F.D. Blum, A.T. Tokuhiro, S. Chattopadhyay, T. Shibata and J. Terry, J. Appl. Phys., 97, 094304 (2005); doi:10.1063/1.1888043.
- H.P. Singh, N. Gupta, S.K. Sharma and R.K. Sharma, Colloids Surf. A, 416, 43 (2013); doi:10.1016/j.colsurfa.2012.09.048.
- C.C. Wu and D.H. Chen, Gold Bull., 43, 234 (2010); doi:10.1007/BF03214993.
- T.M.D. Dang, T.T.T. Le, E. Fribourg-Blanc and M.C. Dang, Adv. Nat. Sci: Nanosci. Nanotechnol., 2, 015009 (2011); doi:10.1088/2043-6262/2/1/015009.
- M.A. Newton and W. van Beek, Chem. Soc. Rev., 39, 4845 (2010); doi:10.1039/b919689g.
- A.K. Singh and Q. Xu, ChemCatChem., 5, 652 (2013); doi:10.1002/cctc.201200591.
- H.L. Jiang and Q. Xu, J. Mater. Chem., 21, 13705 (2011); doi:10.1039/c1jm12020d.
- X. Ji, K.T. Lee, R. Holden, L. Zhang, J. Zhang, G.A. Botton, M. Couillard and L.F. Nazar, Nat. Chem., 2, 286 (2010); doi:10.1038/nchem.553.
- T. Franlin, Chem. Soc. Rev., 41, 7977 (2012); doi:10.1039/c2cs90093a.
- D.L. Pavia, G.M. Lampman, G.S. Kriz and J.R. Vyvyan, Introduction to Spectroscopy, Western Washington University, Bellingham, Washington, Chap. 2, pp. 43-80 (2015).
- T. Chen, Y. Zheng, J. Lin and G. Chen, J. Am. Soc. Mass Spectrom., 19, 997 (2008); doi:10.1016/j.jasms.2008.03.008.
- K. Dai, H. Chen, T.Y. Peng, D. Ke and H. Yi, Chemosphere, 69, 1361 (2007); doi:10.1016/j.chemosphere.2007.05.021.
- C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang and G. Guo, Energy Environ. Sci., 7, 2831 (2014); doi:10.1039/C4EE01299B.
- A.S. Ahmed, M. Shafeeq M, M.L. Singla, S. Tabassum, A.H. Naqvi and A. Azam, J. Lumin., 131, 1 (2011); doi:10.1016/j.jlumin.2010.07.017.
- R.B. Sankara, R.S. Venkatramana, R.N. Koteeswara and K.J. Pramoda, Res. J. Mater. Sci., 1, 11 (2013).
- M.A. Rauf, M.A. Meetani and S. Hisaindee, Desalination, 276, 13 (2011); doi:10.1016/j.desal.2011.03.071.
- I.K. Konstantinou and T.A. Albanis, Appl. Catal. B, 49, 1 (2004); doi:10.1016/j.apcatb.2003.11.010.
References
D.S. Wang and Y. Li, Adv. Mater., 23, 1044 (2011); doi:10.1002/adma.201003695.
B. Xia, F. He and L. Li, Langmuir, 29, 4901 (2013); doi:10.1021/la400355u.
E. Cottancin, J. Lerme, M. Gaudry, M. Pellarin, J.L. Vialle, M. Broyer, B. Prével, M. Treilleux and P. Mélinon, Phys. Rev. B, 62, 5179 (2000); doi:10.1103/PhysRevB.62.5179.
Y. Mizukoshi, T. Fujimoto, Y. Nagata, R. Oshima and Y. Maeda, J. Phys. Chem. B, 104, 6028 (2000); doi:10.1021/jp994255e.
I.N. Iftikhar and P. Abida, Turk. J. Chem., 29, 627 (2005).
Z. Komeily-Nia, M. Montazer and M. Latifi, Colloids Surf. A, 439, 167 (2013); doi:10.1016/j.colsurfa.2013.03.003.
A. Umer, S. Naveed, N. Ramzan and M.S. Rafique, NANO Brief Reports and Reviews, 7, 1230005 (2012); doi:10.1142/S1793292012300058.
M.L. Wu, D.L. Chen and T.C. Huang, Chem. Mater., 13, 599 (2001); doi:10.1021/cm0006502.
N. Toshima and T. Yonezawa, New J. Chem., 22, 1179 (1998); doi:10.1039/a805753b.
D. Lahiri, B. Bunker, B. Mishra, Z. Zhang, D. Meisel, C.M. Doudna, M.F. Bertino, F.D. Blum, A.T. Tokuhiro, S. Chattopadhyay, T. Shibata and J. Terry, J. Appl. Phys., 97, 094304 (2005); doi:10.1063/1.1888043.
H.P. Singh, N. Gupta, S.K. Sharma and R.K. Sharma, Colloids Surf. A, 416, 43 (2013); doi:10.1016/j.colsurfa.2012.09.048.
C.C. Wu and D.H. Chen, Gold Bull., 43, 234 (2010); doi:10.1007/BF03214993.
T.M.D. Dang, T.T.T. Le, E. Fribourg-Blanc and M.C. Dang, Adv. Nat. Sci: Nanosci. Nanotechnol., 2, 015009 (2011); doi:10.1088/2043-6262/2/1/015009.
M.A. Newton and W. van Beek, Chem. Soc. Rev., 39, 4845 (2010); doi:10.1039/b919689g.
A.K. Singh and Q. Xu, ChemCatChem., 5, 652 (2013); doi:10.1002/cctc.201200591.
H.L. Jiang and Q. Xu, J. Mater. Chem., 21, 13705 (2011); doi:10.1039/c1jm12020d.
X. Ji, K.T. Lee, R. Holden, L. Zhang, J. Zhang, G.A. Botton, M. Couillard and L.F. Nazar, Nat. Chem., 2, 286 (2010); doi:10.1038/nchem.553.
T. Franlin, Chem. Soc. Rev., 41, 7977 (2012); doi:10.1039/c2cs90093a.
D.L. Pavia, G.M. Lampman, G.S. Kriz and J.R. Vyvyan, Introduction to Spectroscopy, Western Washington University, Bellingham, Washington, Chap. 2, pp. 43-80 (2015).
T. Chen, Y. Zheng, J. Lin and G. Chen, J. Am. Soc. Mass Spectrom., 19, 997 (2008); doi:10.1016/j.jasms.2008.03.008.
K. Dai, H. Chen, T.Y. Peng, D. Ke and H. Yi, Chemosphere, 69, 1361 (2007); doi:10.1016/j.chemosphere.2007.05.021.
C.-C. Wang, J.-R. Li, X.-L. Lv, Y.-Q. Zhang and G. Guo, Energy Environ. Sci., 7, 2831 (2014); doi:10.1039/C4EE01299B.
A.S. Ahmed, M. Shafeeq M, M.L. Singla, S. Tabassum, A.H. Naqvi and A. Azam, J. Lumin., 131, 1 (2011); doi:10.1016/j.jlumin.2010.07.017.
R.B. Sankara, R.S. Venkatramana, R.N. Koteeswara and K.J. Pramoda, Res. J. Mater. Sci., 1, 11 (2013).
M.A. Rauf, M.A. Meetani and S. Hisaindee, Desalination, 276, 13 (2011); doi:10.1016/j.desal.2011.03.071.
I.K. Konstantinou and T.A. Albanis, Appl. Catal. B, 49, 1 (2004); doi:10.1016/j.apcatb.2003.11.010.