This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Synthesis of Efficient Catalyst Ni-Fe on Ni Foam for Electrochemical Water Splitting
Corresponding Author(s) : Hoang Van Hung
Asian Journal of Chemistry,
Vol. 35 No. 8 (2023): Vol 35 Issue 8, 2023
Abstract
Herein, the Ni-Fe electrocatalysts dispersed on nickel foam (NF) were successfully synthesized by the electrodeposition method. The electrode materials were characterized by XRD, EDX and SEM techniques. Electrochemical analysis was performed to determine the electrocatalytic properties for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) of the overall water splitting. The results indicate that the NiFe/NF electrode exhibits superior electrocatalytic activity as compared to the Ni/Fe and Fe/NF electrodes for both OER and HER with a significantly lower overpotential, 300 mV to reach 10 mA cm–2 with OER and 364 mV to reach −20 mA cm–2 with HER.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Lee, H. Kim, W. Lee and J. Kim, Nano-Micro Lett., 6, 1 (2018); https://doi.org/10.1186/s40486-018-0063-4
- S. Ren, X. Duan, F. Ge, M. Zhang and H. Zheng, J. Power Sources, 480, 228866 (2020); https://doi.org/10.1016/j.jpowsour.2020.228866
- C. Feng, M.B. Faheem, J. Fu, Y. Xiao, C. Li and Y. Li, ACS Catal., 10, 4019 (2020); https://doi.org/10.1021/acscatal.9b05445
- S.H. Park, S.H. Kang and D.H. Youn, Materials, 14, 4768 (2021); https://doi.org/10.3390/ma14164768
- X. Zou, Y. Wu, Y. Liu, D. Liu, W. Li, L. Gu, H. Liu, P. Wang, L. Sun and Y. Zhang, Chem, 4, 1139 (2018); https://doi.org/10.1016/j.chempr.2018.02.023
- K. Liang, L. Guo, K. Marcus, S.F. Zhang, Z. Yang, D.E. Perea, L. Zhou, Y. Du and Y. Yang, ACS Catal., 7, 8406 (2017); https://doi.org/10.1021/acscatal.7b02991
- R. Li, Y. Li, P. Yang, D. Wang, H. Xu, B. Wang, F. Meng, J. Zhang and M. An, J. Energy Chem., 57, 547 (2021); https://doi.org/10.1016/j.jechem.2020.08.040
- B.H.R. Suryanto, Y. Wang, R.K. Hocking, W. Adamson and C. Zhao, Nat. Commun., 10, 5599 (2019); https://doi.org/10.1038/s41467-019-13415-8
- F. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin, J. Bao, W.A. Goddard III, S. Chen and Z. Ren, Nat. Commun., 9, 2551 (2018); https://doi.org/10.1038/s41467-018-04746-z
- C. Xuan, J. Wang, W. Xia, Z. Peng, Z. Wu, W. Lei, K. Xia, H.L. Xin and D. Wang, ACS Appl. Mater. Interfaces, 9, 26134 (2017); https://doi.org/10.1021/acsami.7b08560
- J. Li, S. Wang, J. Chang and L. Feng, Adv. Powder Mater., 1, 100030 (2022); https://doi.org/10.1016/j.apmate.2022.01.003
- Q. Li, T. He, X. Jiang, Y. Lei, Q. Liu, C. Liu, Z. Sun, S. Chen and Y. Zhang, J. Colloid Interface Sci., 606, 518 (2022); https://doi.org/10.1016/j.jcis.2021.08.037
- S.-H. Cai, X.-N. Chen, M.-J. Huang, J.-Y. Han, Y.-W. Zhou and J.-S. Li, J. Mater. Chem. A Mater. Energy Sustain., 10, 772 (2022); https://doi.org/10.1039/D1TA08385F
- J. Cirone, J.S. Dondapati and A. Chen, Electrochim. Acta, 392, 139016 (2021); https://doi.org/10.1016/j.electacta.2021.139016
- Q. Wu, S. Wang, J. Guo, X. Feng, H. Li, S. Lv, Y. Zhou and Z. Chen, Nano Res., 15, 1901 (2022); https://doi.org/10.1007/s12274-021-3800-6
- M. Zhao, J. Du, H. Lei, L. Pei, Z. Gong, X. Wang and H. Bao, Nanoscale, 14, 3191 (2022); https://doi.org/10.1039/D1NR08035K
- K.H. Kim, J.Y. Zheng, W. Shin and Y.S. Kang, RSC Adv., 2, 4759 (2012); https://doi.org/10.1039/c2ra20241g
- P. Ganesan, A. Sivanantham and S. Shanmugam, J. Mater. Chem. A Mater. Energy Sustain., 4, 16394 (2016); https://doi.org/10.1039/C6TA04499A
- Q. Yan, T. Wei, J. Wu, X. Yang, M. Zhu, K. Cheng, K. Ye, K. Zhu, J. Yan, D. Cao, G. Wang and Y. Pan, ACS Sustain. Chem. Eng., 6, 9640 (2018); https://doi.org/10.1021/acssuschemeng.7b04743
- G. Zhang, Y.S. Feng, W.T. Lu, D. He, C.Y. Wang, Y.K. Li, X.Y. Wang and F.F. Cao, ACS Catal., 8, 5431 (2018); https://doi.org/10.1021/acscatal.8b00413
- Q.-Q. Chen, C.-C. Hou, C.-J. Wang, X. Yang, R. Shi and Y. Chen, Chem. Commun., 54, 6400 (2018); https://doi.org/10.1039/C8CC02872A
- C.Z. Yuan, Z.T. Sun, Y.F. Jiang, Z.K. Yang, N. Jiang, Z.W. Zhao, U.Y. Qazi, W.H. Zhang and A.W. Xu, Small, 13, 1604161 (2017); https://doi.org/10.1002/smll.201604161
- X. Bu, R. Wei, Z. Cai, Q. Quan, H. Zhang, W. Wang, F. Li, S.P. Yip, Y. Meng, K.S. Chan, X. Wang and J.C. Ho, Appl. Surf. Sci., 538, 147977 (2021); https://doi.org/10.1016/j.apsusc.2020.147977
References
S. Lee, H. Kim, W. Lee and J. Kim, Nano-Micro Lett., 6, 1 (2018); https://doi.org/10.1186/s40486-018-0063-4
S. Ren, X. Duan, F. Ge, M. Zhang and H. Zheng, J. Power Sources, 480, 228866 (2020); https://doi.org/10.1016/j.jpowsour.2020.228866
C. Feng, M.B. Faheem, J. Fu, Y. Xiao, C. Li and Y. Li, ACS Catal., 10, 4019 (2020); https://doi.org/10.1021/acscatal.9b05445
S.H. Park, S.H. Kang and D.H. Youn, Materials, 14, 4768 (2021); https://doi.org/10.3390/ma14164768
X. Zou, Y. Wu, Y. Liu, D. Liu, W. Li, L. Gu, H. Liu, P. Wang, L. Sun and Y. Zhang, Chem, 4, 1139 (2018); https://doi.org/10.1016/j.chempr.2018.02.023
K. Liang, L. Guo, K. Marcus, S.F. Zhang, Z. Yang, D.E. Perea, L. Zhou, Y. Du and Y. Yang, ACS Catal., 7, 8406 (2017); https://doi.org/10.1021/acscatal.7b02991
R. Li, Y. Li, P. Yang, D. Wang, H. Xu, B. Wang, F. Meng, J. Zhang and M. An, J. Energy Chem., 57, 547 (2021); https://doi.org/10.1016/j.jechem.2020.08.040
B.H.R. Suryanto, Y. Wang, R.K. Hocking, W. Adamson and C. Zhao, Nat. Commun., 10, 5599 (2019); https://doi.org/10.1038/s41467-019-13415-8
F. Yu, H. Zhou, Y. Huang, J. Sun, F. Qin, J. Bao, W.A. Goddard III, S. Chen and Z. Ren, Nat. Commun., 9, 2551 (2018); https://doi.org/10.1038/s41467-018-04746-z
C. Xuan, J. Wang, W. Xia, Z. Peng, Z. Wu, W. Lei, K. Xia, H.L. Xin and D. Wang, ACS Appl. Mater. Interfaces, 9, 26134 (2017); https://doi.org/10.1021/acsami.7b08560
J. Li, S. Wang, J. Chang and L. Feng, Adv. Powder Mater., 1, 100030 (2022); https://doi.org/10.1016/j.apmate.2022.01.003
Q. Li, T. He, X. Jiang, Y. Lei, Q. Liu, C. Liu, Z. Sun, S. Chen and Y. Zhang, J. Colloid Interface Sci., 606, 518 (2022); https://doi.org/10.1016/j.jcis.2021.08.037
S.-H. Cai, X.-N. Chen, M.-J. Huang, J.-Y. Han, Y.-W. Zhou and J.-S. Li, J. Mater. Chem. A Mater. Energy Sustain., 10, 772 (2022); https://doi.org/10.1039/D1TA08385F
J. Cirone, J.S. Dondapati and A. Chen, Electrochim. Acta, 392, 139016 (2021); https://doi.org/10.1016/j.electacta.2021.139016
Q. Wu, S. Wang, J. Guo, X. Feng, H. Li, S. Lv, Y. Zhou and Z. Chen, Nano Res., 15, 1901 (2022); https://doi.org/10.1007/s12274-021-3800-6
M. Zhao, J. Du, H. Lei, L. Pei, Z. Gong, X. Wang and H. Bao, Nanoscale, 14, 3191 (2022); https://doi.org/10.1039/D1NR08035K
K.H. Kim, J.Y. Zheng, W. Shin and Y.S. Kang, RSC Adv., 2, 4759 (2012); https://doi.org/10.1039/c2ra20241g
P. Ganesan, A. Sivanantham and S. Shanmugam, J. Mater. Chem. A Mater. Energy Sustain., 4, 16394 (2016); https://doi.org/10.1039/C6TA04499A
Q. Yan, T. Wei, J. Wu, X. Yang, M. Zhu, K. Cheng, K. Ye, K. Zhu, J. Yan, D. Cao, G. Wang and Y. Pan, ACS Sustain. Chem. Eng., 6, 9640 (2018); https://doi.org/10.1021/acssuschemeng.7b04743
G. Zhang, Y.S. Feng, W.T. Lu, D. He, C.Y. Wang, Y.K. Li, X.Y. Wang and F.F. Cao, ACS Catal., 8, 5431 (2018); https://doi.org/10.1021/acscatal.8b00413
Q.-Q. Chen, C.-C. Hou, C.-J. Wang, X. Yang, R. Shi and Y. Chen, Chem. Commun., 54, 6400 (2018); https://doi.org/10.1039/C8CC02872A
C.Z. Yuan, Z.T. Sun, Y.F. Jiang, Z.K. Yang, N. Jiang, Z.W. Zhao, U.Y. Qazi, W.H. Zhang and A.W. Xu, Small, 13, 1604161 (2017); https://doi.org/10.1002/smll.201604161
X. Bu, R. Wei, Z. Cai, Q. Quan, H. Zhang, W. Wang, F. Li, S.P. Yip, Y. Meng, K.S. Chan, X. Wang and J.C. Ho, Appl. Surf. Sci., 538, 147977 (2021); https://doi.org/10.1016/j.apsusc.2020.147977