Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption of Aqueous Mercury by Amide-Functionalized Ordered Mesoporous Carbon
Asian Journal of Chemistry,
Vol. 28 No. 10 (2016): Vol 28 Issue 10
Abstract
Amide-functionalized ordered mesoporous carbon was developed for removal of mercury (Hg2+) from aqueous phase. Ordered mesoporous carbon was synthesized using a mesoporous silica template, SBA-15, followed by in situ polymerization of acrylic acid, carbonization and template removal. Ordered mesoporous carbon was subsequently functionalized with ethylenediamine through a combined treatment of nitric acid and thionyl chloride. Physio-chemical properties of the carbons were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform IR spectroscopy, potentiometry and N2-adsorption/desorption (BET). Adsorption kinetics and equilibrium of Hg was assessed in batch experimental systems. Results indicated that amide-functionalized carbon (FOMC) maintained the original ordered mesoporous structure and hexagonal framework with an averaged surface area of 607 m2 g-1, pore size of 4.1 nm and pore volume of 0.62 cm3 g-1. The functionalization process immobilized significant amounts of amide group on the carbon surface and enhanced surface negative charges and hydrophilicity. The adsorption of mercury(II) by functionalized ordered mesoporous carbon reached equilibrium within 480 min. The adsorption capacity was 1.5-time as large as for ordered mesoporous carbon, suggesting an enhanced affinity of surface amide groups for aqueous Hg binding. The adsorption also occurred in a wider pH range (about 5.0-7.0 vs. 5.5-6.5). The Freundlich adsorption model fitted the isotherms reasonably well. A surface complexation double layer model was developed to describe the Hg2+ adsorption, from which related H+ and Hg2+ binding constants on the surface were obtained.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Lee, S. Han and T. Hyeon, J. Mater. Chem., 14, 478 (2004); doi:10.1039/b311541k.
- S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki and R. Ryoo, Nature, 414, 470 (2001); doi:10.1038/35106621.
- Y.S. Fang, X.J. Huang, Q. Zeng and L.S. Wang, Biosens. Bioelectron., 73, 71 (2015); doi:10.1016/j.bios.2015.05.046.
- A. Kondo, A.S. Hall, T.E. Mallouk and K. Maeda, Chem. Eur. J., 21, 12148 (2015); doi:10.1002/chem.201501599.
- R. Ryoo, C.H. Ko, M. Kruk, V. Antochshuk and M. Jaroniec, J. Phys. Chem. B, 104, 11465 (2000); doi:10.1021/jp002597a.
- J. Brown, R. Richer and L. Mercier, Micropor. Mesopor. Mater., 37, 41 (2000); doi:10.1016/S1387-1811(99)00191-2.
- R. Anwander, I. Nagl, C. Zapilko and M. Widenmeyer, Tetrahedron, 59, 10567 (2003); doi:10.1016/j.tet.2003.07.018.
- Z.M. Gu and B.L. Deng, Appl. Organomet. Chem., 21, 750 (2007); doi:10.1002/aoc.1283.
- M.M. Titirici, A. Thomas and M. Antonietti, J. Mater. Chem., 17, 3412 (2007); doi:10.1039/b703569a.
- R.C. Costello and D.M. Sullivan, Waste Biomass Valorization, 5, 505 (2014); doi:10.1007/s12649-013-9279-y.
- H. Tamai, K. Shiraki, T. Shiono and H. Yasuda, J. Colloid Interf. Sci., 295, 299 (2006); doi:10.1016/j.jcis.2005.08.012.
- B. Jarrais, A.R. Silva and C. Freire, Eur. J. Inorg. Chem., 2005, 4582 (2005); doi:10.1002/ejic.200500435.
- M.L. Cappello, K.A. Hardy, A.R. MacDairmid, M.C. Gallagher and J.T. Banks, Can. J. Chem., 91, 364 (2013); doi:10.1139/cjc-2012-0467.
- J. Wang, W.H. Wang, W. Xu, X.H. Wang and S. Zhao, J. Environ. Sci. (China), 23, 1839 (2011); doi:10.1016/S1001-0742(10)60584-0.
- Y.H. Li, S.G. Wang, Z.K. Luan, J. Ding, C.L. Xu and D.H. Wu, Carbon, 41, 1057 (2003); doi:10.1016/S0008-6223(02)00440-2.
- H. Yoshitake, T. Yokoi and T. Tatsumi, Chem. Mater., 14, 4603 (2002); doi:10.1021/cm0202355.
- H. Yoshitake, T. Yokoi and T. Tatsumi, Chem. Mater., 15, 1713 (2003); doi:10.1021/cm0218007.
- H. Yoshitake, E. Koiso, T. Tatsumi, H. Horie and H. Yoshimura, Chem. Lett., 33, 872 (2004); doi:10.1246/cl.2004.872.
- B. Lee, Y. Kim, H. Lee and J. Yi, Micropor. Mesopor. Mater., 50, 77 (2001); doi:10.1016/S1387-1811(01)00437-1.
- A. Bibby and L. Mercier, Chem. Mater., 14, 1591 (2002); doi:10.1021/cm0112082.
- A. Walcarius, M. Etienne, J. Bessiere, Amorphous Silica Gels Grafted with Amine or Thiol Groups, Chem. Mater., 14, 2757 (2002); doi:10.1021/cm021117k.
- Z.H. Xiao, R. Zhang, X.Y. Chen, X.L. Li and T.F. Zhou, Appl. Surf. Sci., 263, 795 (2012); doi:10.1016/j.apsusc.2012.09.175.
- R.I. Nooney, M. Kalyanaraman, G. Kennedy and E.J. Maginn, Langmuir, 17, 528 (2001); doi:10.1021/la000720j.
- J.Z. Zhu, B.L. Deng, J. Yang and D.C. Gang, Carbon, 47, 2014 (2009); doi:10.1016/j.carbon.2009.03.047.
- G.P. Jeppu, T.P. Clement, M.O. Barnett and K.K. Lee, Environ. Eng. Sci., 27, 147 (2010); doi:10.1089/ees.2009.0045.
- F.J. Zhang, X.X. Ou, C.Q. Ran and Y.N. Wu, Adv. Mater. Res., 255-260, 2810 (2011); doi:10.4028/www.scientific.net/AMR.255-260.2810.
- S. Kumar, S.V. Godbole and B.S. Tomar, Radiochim. Acta, 101, 73 (2013); doi:10.1524/ract.2013.1997.
- J.H. Pan, R.X. Liu and H.X. Tang, J. Environ. Sci. (China), 19, 403 (2007); doi:10.1016/S1001-0742(07)60067-9.
- A. Kriaa, N. Hamdi and E. Srasra, J. Struct. Chem., 50, 273 (2009); doi:10.1007/s10947-009-0039-6.
- V. Gupta, S.J. Liu, H. Ando, R. Ishii, S. Tateno, Y. Kaneko, M. Yugami, S. Sakamoto, Y. Yamaguchi, O. Nureki and H. Handa, Mol. Pharmacol., 84, 824 (2013); doi:10.1124/mol.113.087940.
- M. Berka and I. Banyai, J. Colloid Interf. Sci., 233, 131 (2001); doi:10.1006/jcis.2000.7233.
- H. Roohi and M. Jahantab, Comput. Theoret. Chem., 1066, 76 (2015); doi:10.1016/j.comptc.2015.05.015.
- C. Foti, O. Giuffre, G. Lando and S. Sammartano, J. Chem. Eng. Data, 54, 893 (2009); doi:10.1021/je800685c.
- J.P. Chen and M.S. Lin, Carbon, 39, 1491 (2001); doi:10.1016/S0008-6223(00)00277-3.
- C.L. Chen, J. Hu, D. Xu, X.L. Tan, Y.D. Meng and X.K. Wang, J. Colloid Interf. Sci., 323, 33 (2008); doi:10.1016/j.jcis.2008.04.046.
- C.S. Yuan, G.Z. Wang, S.H. Xue, I.R. Ie, Y.H. Jen, H.H. Tsai and W.J. Chen, J. Air Waste Manage., 62, 799 (2012); doi:10.1080/10962247.2012.676998.
- A. Kotland, S. Chollet, J.M. Autret, C. Diard, L. Marchal and J.H. Renault, J. Chromatogr. A, 1391, 80 (2015); doi:10.1016/j.chroma.2015.03.005.
- M. D'Arcy, F. Bullough, C. Moffat, E. Borgomeo, M. Teh, R. Vilar and D.J. Weiss, J. Chem. Educ., 91, 505 (2014); doi:10.1021/ed300220d.
- Z.M. Gu, B.L. Deng and J. Yang, Micropor. Mesopor. Mater., 102, 265 (2007); doi:10.1016/j.micromeso.2007.01.011.
- W. Yantasee, Y.H. Lin, G.E. Fryxell, K.L. Alford, B.J. Busche and C.D. Johnson, Ind. Eng. Chem. Res., 43, 2759 (2004); doi:10.1021/ie030182g.
- T.J. Lund, C.M. Koretsky, C.J. Landry, M.S. Schaller and S. Das, Geochem. Trans., 9, 9 (2008); doi:10.1186/1467-4866-9-9.
- C. Bretti, C. De Stefano, G. Lando and S. Sammartano, Fluid Phase Equilib., 355, 104 (2013).
- Y. Zhang, Z.F. Ye, L.Y. Wang, L.Q. Yang and Y.F. Li, Desalination Water Treat., 52, 6481 (2014); doi:10.1080/19443994.2013.821032.
- G. De Tommaso and M. Iuliano, J. Chem. Eng. Data, 57, 52 (2012); doi:10.1021/je200751e.
- B. Zou, Y. Hu, F.J. Cui, L. Jiang, D.H. Yu and H. Huang, J. Colloid Interf. Sci., 417, 210 (2014); doi:10.1016/j.jcis.2013.11.029.
- X.L. Zhao, T. Jiang and B. Du, Chemosphere, 99, 41 (2014); doi:10.1016/j.chemosphere.2013.09.030.
- M.Q. Wei, Y.G. Duan, Q.T. Fang, R. Wang, B.M. Yu and C.S. Yu, J. Central South Univ., 20, 1928 (2013); doi:10.1007/s11771-013-1692-7.
- G. Balomenou, P. Stathi, A. Enotiadis, D. Gournis and Y. Deligiannakis, J. Colloid Interf. Sci., 325, 74 (2008); doi:10.1016/j.jcis.2008.04.072.
- E. Giannakopoulos, P. Stathi, K. Dimos, D. Gournis, Y. Sanakis and Y. Deligiannakis, Langmuir, 22, 6863 (2006); doi:10.1021/la053273m.
- K. Subramaniam, V. Vithayaveroj, S. Yiacoumi and C. Tsouris, J. Colloid Interf. Sci., 268, 12 (2003); doi:10.1016/j.jcis.2003.07.012.
- M.M. Liu, L.A. Hou, B.D. Xi, Y. Zhao and X.F. Xia, Appl. Surf. Sci., 273, 706 (2013); doi:10.1016/j.apsusc.2013.02.116.
- R. Bouchet, D. Devaux, V. Wernert and R. Denoyel, J. Phys. Chem. C, 116, 5090 (2012); doi:10.1021/jp210614h.
- J. Chan, A. Lu and A.J. Bennet, J. Am. Chem. Soc., 133, 2989 (2011); doi:10.1021/ja109199p.
- J. Ikhsan, M.J. Angove, B.B. Johnson and J.D. Wells, J. Colloid Interf. Sci., 284, 400 (2005); doi:10.1016/j.jcis.2004.10.059.
- P. Zhou, H. Yan and B.H. Gu, Chemosphere, 58, 1327 (2005); doi:10.1016/j.chemosphere.2004.10.017.
- Y. Gopalapillai, C.L. Chakrabarti and D. Lean, Environ. Chem., 5, 307 (2008); doi:10.1071/EN08027.
- D.K. DeForest and E.J. Van Genderen, Environ. Toxicol. Chem., 31, 1264 (2012); doi:10.1002/etc.1810.
- D. Sarkar, M.E. Essington and K.C. Misra, Soil Sci. Soc. Am. J., 64, 1968 (2000); doi:10.2136/sssaj2000.6461968x.
- A.P. Cochrane, C.G. Merrett, H.H. Hilton, The Influence of Time Dependent Flight and Maneuver Velocities and Elastic or Viscoelastic Flexibilities on Aerodynamic and Stability Derivatives, 10th International Conference On Mathematical Problems in Engineering, Aerospace and Sciences (ICNPAA 2014), vol. 1637, pp. 403-412 (2014).
- D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka and G.D. Stucky, J. Am. Chem. Soc., 136, 10546 (2014); doi:10.1021/ja506344k.
- X. Du and G.-H. Yang, Int. J. Control, 82, 1485 (2009); doi:10.1080/00207170802549586.
- D.Y. Zhao, J.Y. Sun, Q.Z. Li and G.D. Stucky, Chem. Mater., 12, 275 (2000); doi:10.1021/cm9911363.
- S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 122, 10712 (2000); doi:10.1021/ja002261e.
- M. Kruk, K.M. Kohlhaas, B. Dufour, M. Jaroniec, K. Matyjaszewski, E.B. Celer, R.S. Ruoff and T. Kowalewski, Micropor. Mesopor. Mater., 102, 178 (2007); doi:10.1016/j.micromeso.2006.12.027.
- Y.Q. Li, B.P. Bastakoti, M. Imura, N. Suzuki, X.F. Jiang, S. Ohki, K. Deguchi, M. Suzuki, S. Arai and Y. Yamauchi, Chem. Asian J., 10, 183 (2015); doi:10.1002/asia.201402636.
- R.A. Khatri, S. Chuang, Y. Soong and M. Gray, Ind. Eng. Chem. Res., 44, 3702 (2005); doi:10.1021/ie048997s.
- A. Chang, S. Chuang, M. Gray and Y. Soong, Energy Fuels, 17, 468 (2003); doi:10.1021/ef020176h.
- A.D. Pomogailo, Polym. Sci. Ser. C, 48, 85 (2006); doi:10.1134/S181123820601005X.
- A. Stein, B.J. Melde and R.C. Schroden, Adv. Mater., 12, 1403 (2000); doi:10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X.
- C.Y. Lu and H.S. Chiu, Chem. Eng. Sci., 61, 1138 (2006); doi:10.1016/j.ces.2005.08.007.
- H. Bessbousse, J.F. Verchere and L. Lebrun, Chem. Eng. J., 187, 16 (2012); doi:10.1016/j.cej.2011.12.079.
- T. Padmesh, K. Vijayaraghavan, G. Sekaran and M. Velan, Chem. Eng. J., 122, 55 (2006); doi:10.1016/j.cej.2006.05.013.
- T. Akar, S. Celik, A. Gorgulu Ari and S. Tunali Akar, J. Chem. Technol. Biotechnol., 88, 680 (2013); doi:10.1002/jctb.3886.
- M.A. Hughes and E. Rosenberg, Sep. Sci. Technol., 42, 261 (2007); doi:10.1080/01496390601070141.
- D. Lafont, O.E. Soulages, S.G. Acebal and A.G. Bonorino, Environ. Earth Sci., 70, 1379 (2013); doi:10.1007/s12665-013-2221-6.
- L. Zong and C.C. Chen, Fluid Phase Equilib., 306, 190 (2011); doi:10.1016/j.fluid.2011.04.007.
- M.S. Bharara, S. Parkin and D.A. Atwood, Inorg. Chem., 45, 7261 (2006); doi:10.1021/ic060863e.
References
J. Lee, S. Han and T. Hyeon, J. Mater. Chem., 14, 478 (2004); doi:10.1039/b311541k.
S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki and R. Ryoo, Nature, 414, 470 (2001); doi:10.1038/35106621.
Y.S. Fang, X.J. Huang, Q. Zeng and L.S. Wang, Biosens. Bioelectron., 73, 71 (2015); doi:10.1016/j.bios.2015.05.046.
A. Kondo, A.S. Hall, T.E. Mallouk and K. Maeda, Chem. Eur. J., 21, 12148 (2015); doi:10.1002/chem.201501599.
R. Ryoo, C.H. Ko, M. Kruk, V. Antochshuk and M. Jaroniec, J. Phys. Chem. B, 104, 11465 (2000); doi:10.1021/jp002597a.
J. Brown, R. Richer and L. Mercier, Micropor. Mesopor. Mater., 37, 41 (2000); doi:10.1016/S1387-1811(99)00191-2.
R. Anwander, I. Nagl, C. Zapilko and M. Widenmeyer, Tetrahedron, 59, 10567 (2003); doi:10.1016/j.tet.2003.07.018.
Z.M. Gu and B.L. Deng, Appl. Organomet. Chem., 21, 750 (2007); doi:10.1002/aoc.1283.
M.M. Titirici, A. Thomas and M. Antonietti, J. Mater. Chem., 17, 3412 (2007); doi:10.1039/b703569a.
R.C. Costello and D.M. Sullivan, Waste Biomass Valorization, 5, 505 (2014); doi:10.1007/s12649-013-9279-y.
H. Tamai, K. Shiraki, T. Shiono and H. Yasuda, J. Colloid Interf. Sci., 295, 299 (2006); doi:10.1016/j.jcis.2005.08.012.
B. Jarrais, A.R. Silva and C. Freire, Eur. J. Inorg. Chem., 2005, 4582 (2005); doi:10.1002/ejic.200500435.
M.L. Cappello, K.A. Hardy, A.R. MacDairmid, M.C. Gallagher and J.T. Banks, Can. J. Chem., 91, 364 (2013); doi:10.1139/cjc-2012-0467.
J. Wang, W.H. Wang, W. Xu, X.H. Wang and S. Zhao, J. Environ. Sci. (China), 23, 1839 (2011); doi:10.1016/S1001-0742(10)60584-0.
Y.H. Li, S.G. Wang, Z.K. Luan, J. Ding, C.L. Xu and D.H. Wu, Carbon, 41, 1057 (2003); doi:10.1016/S0008-6223(02)00440-2.
H. Yoshitake, T. Yokoi and T. Tatsumi, Chem. Mater., 14, 4603 (2002); doi:10.1021/cm0202355.
H. Yoshitake, T. Yokoi and T. Tatsumi, Chem. Mater., 15, 1713 (2003); doi:10.1021/cm0218007.
H. Yoshitake, E. Koiso, T. Tatsumi, H. Horie and H. Yoshimura, Chem. Lett., 33, 872 (2004); doi:10.1246/cl.2004.872.
B. Lee, Y. Kim, H. Lee and J. Yi, Micropor. Mesopor. Mater., 50, 77 (2001); doi:10.1016/S1387-1811(01)00437-1.
A. Bibby and L. Mercier, Chem. Mater., 14, 1591 (2002); doi:10.1021/cm0112082.
A. Walcarius, M. Etienne, J. Bessiere, Amorphous Silica Gels Grafted with Amine or Thiol Groups, Chem. Mater., 14, 2757 (2002); doi:10.1021/cm021117k.
Z.H. Xiao, R. Zhang, X.Y. Chen, X.L. Li and T.F. Zhou, Appl. Surf. Sci., 263, 795 (2012); doi:10.1016/j.apsusc.2012.09.175.
R.I. Nooney, M. Kalyanaraman, G. Kennedy and E.J. Maginn, Langmuir, 17, 528 (2001); doi:10.1021/la000720j.
J.Z. Zhu, B.L. Deng, J. Yang and D.C. Gang, Carbon, 47, 2014 (2009); doi:10.1016/j.carbon.2009.03.047.
G.P. Jeppu, T.P. Clement, M.O. Barnett and K.K. Lee, Environ. Eng. Sci., 27, 147 (2010); doi:10.1089/ees.2009.0045.
F.J. Zhang, X.X. Ou, C.Q. Ran and Y.N. Wu, Adv. Mater. Res., 255-260, 2810 (2011); doi:10.4028/www.scientific.net/AMR.255-260.2810.
S. Kumar, S.V. Godbole and B.S. Tomar, Radiochim. Acta, 101, 73 (2013); doi:10.1524/ract.2013.1997.
J.H. Pan, R.X. Liu and H.X. Tang, J. Environ. Sci. (China), 19, 403 (2007); doi:10.1016/S1001-0742(07)60067-9.
A. Kriaa, N. Hamdi and E. Srasra, J. Struct. Chem., 50, 273 (2009); doi:10.1007/s10947-009-0039-6.
V. Gupta, S.J. Liu, H. Ando, R. Ishii, S. Tateno, Y. Kaneko, M. Yugami, S. Sakamoto, Y. Yamaguchi, O. Nureki and H. Handa, Mol. Pharmacol., 84, 824 (2013); doi:10.1124/mol.113.087940.
M. Berka and I. Banyai, J. Colloid Interf. Sci., 233, 131 (2001); doi:10.1006/jcis.2000.7233.
H. Roohi and M. Jahantab, Comput. Theoret. Chem., 1066, 76 (2015); doi:10.1016/j.comptc.2015.05.015.
C. Foti, O. Giuffre, G. Lando and S. Sammartano, J. Chem. Eng. Data, 54, 893 (2009); doi:10.1021/je800685c.
J.P. Chen and M.S. Lin, Carbon, 39, 1491 (2001); doi:10.1016/S0008-6223(00)00277-3.
C.L. Chen, J. Hu, D. Xu, X.L. Tan, Y.D. Meng and X.K. Wang, J. Colloid Interf. Sci., 323, 33 (2008); doi:10.1016/j.jcis.2008.04.046.
C.S. Yuan, G.Z. Wang, S.H. Xue, I.R. Ie, Y.H. Jen, H.H. Tsai and W.J. Chen, J. Air Waste Manage., 62, 799 (2012); doi:10.1080/10962247.2012.676998.
A. Kotland, S. Chollet, J.M. Autret, C. Diard, L. Marchal and J.H. Renault, J. Chromatogr. A, 1391, 80 (2015); doi:10.1016/j.chroma.2015.03.005.
M. D'Arcy, F. Bullough, C. Moffat, E. Borgomeo, M. Teh, R. Vilar and D.J. Weiss, J. Chem. Educ., 91, 505 (2014); doi:10.1021/ed300220d.
Z.M. Gu, B.L. Deng and J. Yang, Micropor. Mesopor. Mater., 102, 265 (2007); doi:10.1016/j.micromeso.2007.01.011.
W. Yantasee, Y.H. Lin, G.E. Fryxell, K.L. Alford, B.J. Busche and C.D. Johnson, Ind. Eng. Chem. Res., 43, 2759 (2004); doi:10.1021/ie030182g.
T.J. Lund, C.M. Koretsky, C.J. Landry, M.S. Schaller and S. Das, Geochem. Trans., 9, 9 (2008); doi:10.1186/1467-4866-9-9.
C. Bretti, C. De Stefano, G. Lando and S. Sammartano, Fluid Phase Equilib., 355, 104 (2013).
Y. Zhang, Z.F. Ye, L.Y. Wang, L.Q. Yang and Y.F. Li, Desalination Water Treat., 52, 6481 (2014); doi:10.1080/19443994.2013.821032.
G. De Tommaso and M. Iuliano, J. Chem. Eng. Data, 57, 52 (2012); doi:10.1021/je200751e.
B. Zou, Y. Hu, F.J. Cui, L. Jiang, D.H. Yu and H. Huang, J. Colloid Interf. Sci., 417, 210 (2014); doi:10.1016/j.jcis.2013.11.029.
X.L. Zhao, T. Jiang and B. Du, Chemosphere, 99, 41 (2014); doi:10.1016/j.chemosphere.2013.09.030.
M.Q. Wei, Y.G. Duan, Q.T. Fang, R. Wang, B.M. Yu and C.S. Yu, J. Central South Univ., 20, 1928 (2013); doi:10.1007/s11771-013-1692-7.
G. Balomenou, P. Stathi, A. Enotiadis, D. Gournis and Y. Deligiannakis, J. Colloid Interf. Sci., 325, 74 (2008); doi:10.1016/j.jcis.2008.04.072.
E. Giannakopoulos, P. Stathi, K. Dimos, D. Gournis, Y. Sanakis and Y. Deligiannakis, Langmuir, 22, 6863 (2006); doi:10.1021/la053273m.
K. Subramaniam, V. Vithayaveroj, S. Yiacoumi and C. Tsouris, J. Colloid Interf. Sci., 268, 12 (2003); doi:10.1016/j.jcis.2003.07.012.
M.M. Liu, L.A. Hou, B.D. Xi, Y. Zhao and X.F. Xia, Appl. Surf. Sci., 273, 706 (2013); doi:10.1016/j.apsusc.2013.02.116.
R. Bouchet, D. Devaux, V. Wernert and R. Denoyel, J. Phys. Chem. C, 116, 5090 (2012); doi:10.1021/jp210614h.
J. Chan, A. Lu and A.J. Bennet, J. Am. Chem. Soc., 133, 2989 (2011); doi:10.1021/ja109199p.
J. Ikhsan, M.J. Angove, B.B. Johnson and J.D. Wells, J. Colloid Interf. Sci., 284, 400 (2005); doi:10.1016/j.jcis.2004.10.059.
P. Zhou, H. Yan and B.H. Gu, Chemosphere, 58, 1327 (2005); doi:10.1016/j.chemosphere.2004.10.017.
Y. Gopalapillai, C.L. Chakrabarti and D. Lean, Environ. Chem., 5, 307 (2008); doi:10.1071/EN08027.
D.K. DeForest and E.J. Van Genderen, Environ. Toxicol. Chem., 31, 1264 (2012); doi:10.1002/etc.1810.
D. Sarkar, M.E. Essington and K.C. Misra, Soil Sci. Soc. Am. J., 64, 1968 (2000); doi:10.2136/sssaj2000.6461968x.
A.P. Cochrane, C.G. Merrett, H.H. Hilton, The Influence of Time Dependent Flight and Maneuver Velocities and Elastic or Viscoelastic Flexibilities on Aerodynamic and Stability Derivatives, 10th International Conference On Mathematical Problems in Engineering, Aerospace and Sciences (ICNPAA 2014), vol. 1637, pp. 403-412 (2014).
D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka and G.D. Stucky, J. Am. Chem. Soc., 136, 10546 (2014); doi:10.1021/ja506344k.
X. Du and G.-H. Yang, Int. J. Control, 82, 1485 (2009); doi:10.1080/00207170802549586.
D.Y. Zhao, J.Y. Sun, Q.Z. Li and G.D. Stucky, Chem. Mater., 12, 275 (2000); doi:10.1021/cm9911363.
S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 122, 10712 (2000); doi:10.1021/ja002261e.
M. Kruk, K.M. Kohlhaas, B. Dufour, M. Jaroniec, K. Matyjaszewski, E.B. Celer, R.S. Ruoff and T. Kowalewski, Micropor. Mesopor. Mater., 102, 178 (2007); doi:10.1016/j.micromeso.2006.12.027.
Y.Q. Li, B.P. Bastakoti, M. Imura, N. Suzuki, X.F. Jiang, S. Ohki, K. Deguchi, M. Suzuki, S. Arai and Y. Yamauchi, Chem. Asian J., 10, 183 (2015); doi:10.1002/asia.201402636.
R.A. Khatri, S. Chuang, Y. Soong and M. Gray, Ind. Eng. Chem. Res., 44, 3702 (2005); doi:10.1021/ie048997s.
A. Chang, S. Chuang, M. Gray and Y. Soong, Energy Fuels, 17, 468 (2003); doi:10.1021/ef020176h.
A.D. Pomogailo, Polym. Sci. Ser. C, 48, 85 (2006); doi:10.1134/S181123820601005X.
A. Stein, B.J. Melde and R.C. Schroden, Adv. Mater., 12, 1403 (2000); doi:10.1002/1521-4095(200010)12:19<1403::AID-ADMA1403>3.0.CO;2-X.
C.Y. Lu and H.S. Chiu, Chem. Eng. Sci., 61, 1138 (2006); doi:10.1016/j.ces.2005.08.007.
H. Bessbousse, J.F. Verchere and L. Lebrun, Chem. Eng. J., 187, 16 (2012); doi:10.1016/j.cej.2011.12.079.
T. Padmesh, K. Vijayaraghavan, G. Sekaran and M. Velan, Chem. Eng. J., 122, 55 (2006); doi:10.1016/j.cej.2006.05.013.
T. Akar, S. Celik, A. Gorgulu Ari and S. Tunali Akar, J. Chem. Technol. Biotechnol., 88, 680 (2013); doi:10.1002/jctb.3886.
M.A. Hughes and E. Rosenberg, Sep. Sci. Technol., 42, 261 (2007); doi:10.1080/01496390601070141.
D. Lafont, O.E. Soulages, S.G. Acebal and A.G. Bonorino, Environ. Earth Sci., 70, 1379 (2013); doi:10.1007/s12665-013-2221-6.
L. Zong and C.C. Chen, Fluid Phase Equilib., 306, 190 (2011); doi:10.1016/j.fluid.2011.04.007.
M.S. Bharara, S. Parkin and D.A. Atwood, Inorg. Chem., 45, 7261 (2006); doi:10.1021/ic060863e.