This work is licensed under a Creative Commons Attribution 4.0 International License.
Fabrication of Eco-friendly Hybrid Active Imidazole based Ionic Liquid Embedded Cadmium Oxide-TiO2 Catalyst for Photoelectrocatalytic and Hydrophobic Properties
Corresponding Author(s) : K. Rajathi
Asian Journal of Chemistry,
Vol. 35 No. 8 (2023): Vol 35 Issue 8, 2023
Abstract
In this work, a new and straightforward method for the synthesis of 1-hexyl-3-methyl-2-(2-oxo-ethyl)-3H-imidazol-1-ium bromide (HMIB) embedded on CdO-TiO2 (HMIB-CT) hybrid material is reported. The efficiency of the catalytically active material HMIB-CT with nanostructures is entirely depend on the preparation method. The X-ray diffraction patterns revealed that the anatase phase of titanium dioxide results in the formation of well-crystallized CdO and ionic liquid. The optical absorbance spectra demonstrated that the energy gap is diminished from 2.80 to 2.37 eV, which happens due to the presence of ionic liquids. The HR-TEM study shows that the particles are present in spherical shape, while some particles are rod structures with small amount of agglomeration found in imidazole based ionic liquid embedded CdO-TiO2 nanoparticles. The photoluminescence emission results also indicated that ionic liquids efficiently supported and blocked the recombination of charge carriers. A complete demineralization of an organic dye (Trypan blue) under natural sun beam irradiation required for the photocatalytic activity is also accomplished. Moreover, the prepared ionic liquid supported CdO-TiO2 hybrid material shows better electrocatalytic activity upon methanol oxidation (4.89 mA) and super hydrophobic nature by contact angle measurement (112.2º).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, Adv. Mater., 24, 229 (2012); https://doi.org/10.1002/adma.201102752
- T. Kamegawa, H. Imai and H. Yamashita, Bull. Chem. Soc. Jpn., 89, 743 (2016); https://doi.org/10.1246/bcsj.20160080
- S. Sheik Mydeen, M. Kottaisamy and V.S. Vasantha, Int. J. Innov. Technol. Exploring Eng., 9, 2278 (2019); https://doi.org/10.35940/ijitee.B7145.129219
- W. Fan, Q. Zhang and Y. Wang, Phys. Chem. Chem. Phys., 15, 2632 (2013); https://doi.org/10.1039/c2cp43524a
- Y. Hong, Y. Jiang, C. Li, W. Fan, X. Yan, M. Yan and W. Shi. Appl. Catal. B, 180, 663 (2016); https://doi.org/10.1016/j.apcatb.2015.06.057
- H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo and X. Li, Chinese J. Catal., 43, 178 (2022); https://doi.org/10.1016/S1872-2067(21)63910-4
- A. Galinska and J. Walendziewski, Energy Fuels, 19, 1143 (2005); https://doi.org/10.1021/ef0400619
- M. Anpo and M. Takeuchi, J. Catal., 216, 505 (2003); https://doi.org/10.1016/S0021-9517(02)00104-5
- F.-X. Xiao, J. Miao, H.-Y. Wang and B. Liu, J. Mater. Chem. A Mater. Energy Sustain., 1, 12229 (2013); https://doi.org/10.1039/c3ta12856c
- S. Manchwari, J. Khatter and R.P. Chauhan, Inorg. Chem. Commun., 146, 110082 (2022); https://doi.org/10.1016/j.inoche.2022.110082
- R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, Mater. Chem. Phys., 125, 277 (2011); https://doi.org/10.1016/j.matchemphys.2010.09.030
- F. Xu, Y. Yuan, H. Han, D. Wu, Z. Gao and K. Jiang, CrystEngComm, 14, 3615 (2012); https://doi.org/10.1039/c2ce06267d
- K. Thirumalai, S. Balachandran, K. Selvam and M. Swaminathan, Emerg. Mater. Res., 5, 264 (2016); https://doi.org/10.1680/jemmr.15.00085
- S. Balachandran, S.G. Praveen, R. Velmurugan and M. Swaminathan, RSC Adv., 4, 4353 (2014); https://doi.org/10.1039/C3RA45381B
- M. Muruganandham and M. Swaminathan, Sol. Energy Mater. Sol. Cells, 81, 439 (2004); https://doi.org/10.1016/j.solmat.2003.11.022
- C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout and J.L. Gole, Nano Lett., 3, 1049 (2003); https://doi.org/10.1021/nl034332o
- D.N. Kozlov, J. Kiefer, T. Seeger, A.P. Froba and A. Leipertz, J. Phys. Chem. B, 115, 8528 (2011); https://doi.org/10.1021/jp203656z
- W.L. Hough, M. Smiglak, H. Rodríguez, R.P. Swatloski, S.K. Spear, D.T. Daly, J. Pernak, J.E. Grisel, R.D. Carliss, M.D. Soutullo, J.H. Davis Jr. and R.D. Rogers, New J. Chem., 31, 1429 (2007); https://doi.org/10.1039/b706677p
- F. Liu, J. Yu, A.B. Qazi, L. Zhang and X. Liu, Environ. Sci. Technol., 55, 1419 (2021); https://doi.org/10.1021/acs.est.0c05855
- N. Nasirpour, M. Mohammadpourfard and S.Z. Heris, Chem. Eng. Res. Design, 160, 264 (2020); https://doi.org/10.1016/j.cherd.2020.06.006
- L. Wei, L. Wang, Z. Cui, Y. Liu and A. Du, Molecules, 28, 3836 (2023); https://doi.org/10.3390/molecules28093836
- V.O. Nyamori, M. Gumede and M.D. Bala, J. Organomet. Chem., 695, 1126 (2010); https://doi.org/10.1016/j.jorganchem.2010.01.019
- P. Dash, S.M. Miller and R.W.J. Scott, J. Mol. Catal. Chem., 329, 86 (2010); https://doi.org/10.1016/j.molcata.2010.06.022
- B.-K. Kim, E.J. Lee, Y. Kang and J.-J. Lee, J. Ind. Eng. Chem., 61, 388 (2018); https://doi.org/10.1016/j.jiec.2017.12.038
- B. Xin and J. Hao, Chem. Soc. Rev., 43, 7171 (2014); https://doi.org/10.1039/C4CS00172A
- N. Subasree and J.A. Selvi, Heliyon, 6, e03498 (2020); https://doi.org/10.1016/j.heliyon.2020.e03498
- V. Chauhan, S. Singh and A. Bhadani, Colloids Surf. A Physicochem. Eng. Asp., 395, 1 (2012); https://doi.org/10.1016/j.colsurfa.2011.11.022
- R.J.V. Michael, B. Sambandam, T. Muthukumar, M.J. Umapathy and P.T. Manoharan, Phys. Chem. Chem. Phys., 16, 8541 (2014); https://doi.org/10.1039/c4cp00169a
- L.C. Sim, K.H. Leong, S. Ibrahim and P. Saravanan, J. Mater. Chem. A Mater. Energy Sustain., 2, 5315 (2014); https://doi.org/10.1039/C3TA14857B
- P. Zhou, Z. Le, Y. Xie, J. Fang and J. Xu, J. Alloys Compd., 692, 170 (2016); https://doi.org/10.1016/j.jallcom.2016.09.039
- K. Manjunath, L.S. Reddy Yadav, T. Jayalakshmi, V. Reddy, H. Rajanaika and G. Nagaraju, J. Mater. Res. Technol., 7, 7 (2018); https://doi.org/10.1016/j.jmrt.2017.02.001
References
H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri and J. Ye, Adv. Mater., 24, 229 (2012); https://doi.org/10.1002/adma.201102752
T. Kamegawa, H. Imai and H. Yamashita, Bull. Chem. Soc. Jpn., 89, 743 (2016); https://doi.org/10.1246/bcsj.20160080
S. Sheik Mydeen, M. Kottaisamy and V.S. Vasantha, Int. J. Innov. Technol. Exploring Eng., 9, 2278 (2019); https://doi.org/10.35940/ijitee.B7145.129219
W. Fan, Q. Zhang and Y. Wang, Phys. Chem. Chem. Phys., 15, 2632 (2013); https://doi.org/10.1039/c2cp43524a
Y. Hong, Y. Jiang, C. Li, W. Fan, X. Yan, M. Yan and W. Shi. Appl. Catal. B, 180, 663 (2016); https://doi.org/10.1016/j.apcatb.2015.06.057
H. Wang, X. Li, X. Zhao, C. Li, X. Song, P. Zhang, P. Huo and X. Li, Chinese J. Catal., 43, 178 (2022); https://doi.org/10.1016/S1872-2067(21)63910-4
A. Galinska and J. Walendziewski, Energy Fuels, 19, 1143 (2005); https://doi.org/10.1021/ef0400619
M. Anpo and M. Takeuchi, J. Catal., 216, 505 (2003); https://doi.org/10.1016/S0021-9517(02)00104-5
F.-X. Xiao, J. Miao, H.-Y. Wang and B. Liu, J. Mater. Chem. A Mater. Energy Sustain., 1, 12229 (2013); https://doi.org/10.1039/c3ta12856c
S. Manchwari, J. Khatter and R.P. Chauhan, Inorg. Chem. Commun., 146, 110082 (2022); https://doi.org/10.1016/j.inoche.2022.110082
R. Saravanan, H. Shankar, T. Prakash, V. Narayanan, Mater. Chem. Phys., 125, 277 (2011); https://doi.org/10.1016/j.matchemphys.2010.09.030
F. Xu, Y. Yuan, H. Han, D. Wu, Z. Gao and K. Jiang, CrystEngComm, 14, 3615 (2012); https://doi.org/10.1039/c2ce06267d
K. Thirumalai, S. Balachandran, K. Selvam and M. Swaminathan, Emerg. Mater. Res., 5, 264 (2016); https://doi.org/10.1680/jemmr.15.00085
S. Balachandran, S.G. Praveen, R. Velmurugan and M. Swaminathan, RSC Adv., 4, 4353 (2014); https://doi.org/10.1039/C3RA45381B
M. Muruganandham and M. Swaminathan, Sol. Energy Mater. Sol. Cells, 81, 439 (2004); https://doi.org/10.1016/j.solmat.2003.11.022
C. Burda, Y. Lou, X. Chen, A.C.S. Samia, J. Stout and J.L. Gole, Nano Lett., 3, 1049 (2003); https://doi.org/10.1021/nl034332o
D.N. Kozlov, J. Kiefer, T. Seeger, A.P. Froba and A. Leipertz, J. Phys. Chem. B, 115, 8528 (2011); https://doi.org/10.1021/jp203656z
W.L. Hough, M. Smiglak, H. Rodríguez, R.P. Swatloski, S.K. Spear, D.T. Daly, J. Pernak, J.E. Grisel, R.D. Carliss, M.D. Soutullo, J.H. Davis Jr. and R.D. Rogers, New J. Chem., 31, 1429 (2007); https://doi.org/10.1039/b706677p
F. Liu, J. Yu, A.B. Qazi, L. Zhang and X. Liu, Environ. Sci. Technol., 55, 1419 (2021); https://doi.org/10.1021/acs.est.0c05855
N. Nasirpour, M. Mohammadpourfard and S.Z. Heris, Chem. Eng. Res. Design, 160, 264 (2020); https://doi.org/10.1016/j.cherd.2020.06.006
L. Wei, L. Wang, Z. Cui, Y. Liu and A. Du, Molecules, 28, 3836 (2023); https://doi.org/10.3390/molecules28093836
V.O. Nyamori, M. Gumede and M.D. Bala, J. Organomet. Chem., 695, 1126 (2010); https://doi.org/10.1016/j.jorganchem.2010.01.019
P. Dash, S.M. Miller and R.W.J. Scott, J. Mol. Catal. Chem., 329, 86 (2010); https://doi.org/10.1016/j.molcata.2010.06.022
B.-K. Kim, E.J. Lee, Y. Kang and J.-J. Lee, J. Ind. Eng. Chem., 61, 388 (2018); https://doi.org/10.1016/j.jiec.2017.12.038
B. Xin and J. Hao, Chem. Soc. Rev., 43, 7171 (2014); https://doi.org/10.1039/C4CS00172A
N. Subasree and J.A. Selvi, Heliyon, 6, e03498 (2020); https://doi.org/10.1016/j.heliyon.2020.e03498
V. Chauhan, S. Singh and A. Bhadani, Colloids Surf. A Physicochem. Eng. Asp., 395, 1 (2012); https://doi.org/10.1016/j.colsurfa.2011.11.022
R.J.V. Michael, B. Sambandam, T. Muthukumar, M.J. Umapathy and P.T. Manoharan, Phys. Chem. Chem. Phys., 16, 8541 (2014); https://doi.org/10.1039/c4cp00169a
L.C. Sim, K.H. Leong, S. Ibrahim and P. Saravanan, J. Mater. Chem. A Mater. Energy Sustain., 2, 5315 (2014); https://doi.org/10.1039/C3TA14857B
P. Zhou, Z. Le, Y. Xie, J. Fang and J. Xu, J. Alloys Compd., 692, 170 (2016); https://doi.org/10.1016/j.jallcom.2016.09.039
K. Manjunath, L.S. Reddy Yadav, T. Jayalakshmi, V. Reddy, H. Rajanaika and G. Nagaraju, J. Mater. Res. Technol., 7, 7 (2018); https://doi.org/10.1016/j.jmrt.2017.02.001