Copyright (c) 2023 Nilesh Junghare, Pravin Kadam, Jotiram Chavan, Minakshi Patil, Gurunath Chougale
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Highly Efficient, Catalyst-Free Synthesis of S-Alkyl/aryl Dithiocarbamate Derivatives under Green Conditions and Evaluation of their Biological Activity
Corresponding Author(s) : Nilesh Junghare
Asian Journal of Chemistry,
Vol. 35 No. 11 (2023): Vol 35 Issue 11, 2023
Abstract
An efficient, feasible, transition metal catalyst-free and environmental friendly approach for the synthesis of dithiocarbamate in an ethanol-water solvent combination at room temperature has been established. Alkyl/aryl halide, carbon disulfide and secondary amine were condensed in one pot to produce a range of dithiocarbamate derivatives. Based on the results, the yields were higher when aliphatic amine reacted with benzyl halides as compared to alkyl halides. This method has the advantage of using no hazardous solvents. Other benefits of this method include producing compounds with a good yield by a catalyst-free reaction employing a simple, affordable and useful method. When tested against specific pathogens, selected dithiocarbamate derivatives showed strong antibacterial activity but weak antifungal activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Erdmenger, C. Guerrero-Sanchez, J. Vitz, R. Hoogenboom and U.S. Schubert, Chem. Soc. Rev., 39, 3317 (2010); https://doi.org/10.1039/b909964f
- A. Shaabani, R. Ghadari, A. Sarvary and A.H. Rezayan, J. Org. Chem., 74, 4372 (2009); https://doi.org/10.1021/jo9005427
- J. Zhu, Eur. J. Org. Chem., 1133 (2003); https://doi.org/10.1002/ejoc.200390167
- A. Chanda and V.V. Fokin, Chem. Rev., 109, 725 (2009); https://doi.org/10.1021/cr800448q
- W.N. Kun, S. Mlowe, L.D. Nyamen, P.T. Ndifon, M.A. Malik, O.Q. Munro and N. Revaprasadu, Chem. Eur. J., 22, 13127 (2016); https://doi.org/10.1002/chem.201602106
- M.N. Alam, S.K. Mandal and S.C. Debnath, Rubber Chem. Technol., 85, 120 (2012); https://doi.org/10.5254/1.3672434
- G. Hogarth, Mini-Rev. Med. Chem., 12, 1202 (2012); https://doi.org/10.2174/138955712802762095
- U. Boas, H. Gertz, J.B. Christensen and P.M.H. Heegaard, Tetrahedron Lett., 45, 269 (2004); https://doi.org/10.1016/j.tetlet.2003.10.182
- R. Wilhelm and A. Blanrue, Synthesis, 583 (2009); https://doi.org/10.1055/s-0028-1083317
- P. Morf, F. Raimondi, H.-G. Nothofer, B. Schnyder, A. Yasuda, J.M. Wessels and T.A. Jung, Langmuir, 22, 658 (2006); https://doi.org/10.1021/la052952u
- M. D’hooghe and N. De Kimpe, Tetrahedron, 62, 513 (2006); https://doi.org/10.1016/j.tet.2005.09.028
- C. Rafin, E. Veignie, M. Sancholle, D. Postel, C. Len, P. Villa and G. Ronco, J. Agric. Food Chem., 48, 5283 (2000); https://doi.org/10.1021/jf0003698
- L. Ronconi, C. Marzano, P. Zanello, M. Corsini, G. Miolo, C. Macca, A. Trevisan and D. Fregona, J. Med. Chem., 49, 1648 (2006); https://doi.org/10.1021/jm0509288
- G. Brahemi, F.R. Kona, A. Fiasella, D. Buac, J. Soukupová, A. Brancale, A.M. Burger and A.D. Westwell, J. Med. Chem., 53, 2757 (2010); https://doi.org/10.1021/jm901757t
- S.-L. Cao, Y. Han, C.-Z. Yuan, Y. Wang, Z.-K. Xiahou, J. Liao, R.-T. Gao, B.-B. Mao, B.-L. Zhao, Z.-F. Li and X. Xu, Eur. J. Med. Chem., 64, 401 (2013); https://doi.org/10.1016/j.ejmech.2013.04.017
- N. Lal, S. Jangir, V. Bala, D. Mandalapu, A. Sarswat, L. Kumar, A. Jain, L. Kumar, B. Kushwaha, A.K. Pandey, S. Krishna, T. Rawat, P.K. Shukla, J.P. Maikhuri, M.I. Siddiqi, G. Gupta and V.L. Sharma, Eur. J. Med. Chem., 115, 275 (2016); https://doi.org/10.1016/j.ejmech.2016.03.012
- F. Carta, M. Aggarwal, A. Maresca, A. Scozzafava, R. McKenna, E. Masini and C.T. Supuran, J. Med. Chem., 55, 1721 (2012); https://doi.org/10.1021/jm300031j
- G. Turan-Zitouni, A. Özdemir and K. Güven, Arch. Pharm., 338, 96 (2005); https://doi.org/10.1002/ardp.200400935
- C.I. Yeo, E.R.T. Tiekink and J. Chew, Inorganics, 9, 48 (2021); https://doi.org/10.3390/inorganics9060048
- B. Guo, Z. Ge, T. Cheng and R. Li, Synth. Commun., 31, 3021 (2001); https://doi.org/10.1081/SCC-100105674
- S. Levent, U.A. Çevik, B.N. Saglik, Y. Özkay, Ö.D. Can, Ü.D. Özkay and Ü. Uçucu, Phosphorus Sulfur Silicon Relat. Elem., 192, 469 (2017); https://doi.org/10.1080/10426507.2016.1259228
- C. Bolzati, M. Cavazza-Ceccato, S. Agostini, F. Refosco, Y. Yamamichi, S. Tokunaga, D. Carta, N. Salvarese, D. Bernardini and G. Bandoli, Bioconjug. Chem., 21, 928 (2010); https://doi.org/10.1021/bc900493e
- H. Sudhamani, S.K. Thaslim Basha, S.M.C. Reddy, B. Sreedhar, S. Adam and C. Naga Raju, Res. Chem. Intermed., 42, 7471 (2016); https://doi.org/10.1007/s11164-016-2547-2
- A. Asadipour, Z. Shams, K. Eskandari, M.-H. Moshafi, E. Faghih-Mirzaei and Y. Pourshojaei, Res. Chem. Intermed., 44, 1295 (2018); https://doi.org/10.1007/s11164-017-3167-1
- K. Biswas, S. Ghosh, P. Ghosh and B. Basu, J. Sulfur Chem., 37, 361 (2016); https://doi.org/10.1080/17415993.2016.1166225
- D. Chaturvedi and S. Ray, Tetrahedron Lett., 47, 1307 (2006); https://doi.org/10.1016/j.tetlet.2005.12.079
- S. Ahammed, A. Saha and B.C. Ranu, RSC Adv., 2, 6329 (2012); https://doi.org/10.1039/c2ra20856c
- S. Ma, J. Liu and X. Xie, Synthesis, 1569 (2012); https://doi.org/10.1055/s-0031-1290811
- Q. Sha and Y.-Y. Wei, Org. Biomol. Chem., 11, 5615 (2013); https://doi.org/10.1039/c3ob40745d
- N.A. Isley, S. Dobarco and B.H. Lipshutz, Green Chem., 16, 1480 (2014); https://doi.org/10.1039/c3gc42188k
- K. Eskandari, B. Karami and S. Khodabakhshi, J. Chem. Res., 38, 600 (2014); https://doi.org/10.3184/174751914X14114871789226
- J.H. Clark, Nat. Chem., 1, 12 (2009); https://doi.org/10.1038/nchem.146
- A.Z. Halimehjani, F. Ebrahimi, N. Azizi and M.R. Saidi, J. Heterocycl. Chem., 46, 347 (2009); https://doi.org/10.1002/jhet.75
References
T. Erdmenger, C. Guerrero-Sanchez, J. Vitz, R. Hoogenboom and U.S. Schubert, Chem. Soc. Rev., 39, 3317 (2010); https://doi.org/10.1039/b909964f
A. Shaabani, R. Ghadari, A. Sarvary and A.H. Rezayan, J. Org. Chem., 74, 4372 (2009); https://doi.org/10.1021/jo9005427
J. Zhu, Eur. J. Org. Chem., 1133 (2003); https://doi.org/10.1002/ejoc.200390167
A. Chanda and V.V. Fokin, Chem. Rev., 109, 725 (2009); https://doi.org/10.1021/cr800448q
W.N. Kun, S. Mlowe, L.D. Nyamen, P.T. Ndifon, M.A. Malik, O.Q. Munro and N. Revaprasadu, Chem. Eur. J., 22, 13127 (2016); https://doi.org/10.1002/chem.201602106
M.N. Alam, S.K. Mandal and S.C. Debnath, Rubber Chem. Technol., 85, 120 (2012); https://doi.org/10.5254/1.3672434
G. Hogarth, Mini-Rev. Med. Chem., 12, 1202 (2012); https://doi.org/10.2174/138955712802762095
U. Boas, H. Gertz, J.B. Christensen and P.M.H. Heegaard, Tetrahedron Lett., 45, 269 (2004); https://doi.org/10.1016/j.tetlet.2003.10.182
R. Wilhelm and A. Blanrue, Synthesis, 583 (2009); https://doi.org/10.1055/s-0028-1083317
P. Morf, F. Raimondi, H.-G. Nothofer, B. Schnyder, A. Yasuda, J.M. Wessels and T.A. Jung, Langmuir, 22, 658 (2006); https://doi.org/10.1021/la052952u
M. D’hooghe and N. De Kimpe, Tetrahedron, 62, 513 (2006); https://doi.org/10.1016/j.tet.2005.09.028
C. Rafin, E. Veignie, M. Sancholle, D. Postel, C. Len, P. Villa and G. Ronco, J. Agric. Food Chem., 48, 5283 (2000); https://doi.org/10.1021/jf0003698
L. Ronconi, C. Marzano, P. Zanello, M. Corsini, G. Miolo, C. Macca, A. Trevisan and D. Fregona, J. Med. Chem., 49, 1648 (2006); https://doi.org/10.1021/jm0509288
G. Brahemi, F.R. Kona, A. Fiasella, D. Buac, J. Soukupová, A. Brancale, A.M. Burger and A.D. Westwell, J. Med. Chem., 53, 2757 (2010); https://doi.org/10.1021/jm901757t
S.-L. Cao, Y. Han, C.-Z. Yuan, Y. Wang, Z.-K. Xiahou, J. Liao, R.-T. Gao, B.-B. Mao, B.-L. Zhao, Z.-F. Li and X. Xu, Eur. J. Med. Chem., 64, 401 (2013); https://doi.org/10.1016/j.ejmech.2013.04.017
N. Lal, S. Jangir, V. Bala, D. Mandalapu, A. Sarswat, L. Kumar, A. Jain, L. Kumar, B. Kushwaha, A.K. Pandey, S. Krishna, T. Rawat, P.K. Shukla, J.P. Maikhuri, M.I. Siddiqi, G. Gupta and V.L. Sharma, Eur. J. Med. Chem., 115, 275 (2016); https://doi.org/10.1016/j.ejmech.2016.03.012
F. Carta, M. Aggarwal, A. Maresca, A. Scozzafava, R. McKenna, E. Masini and C.T. Supuran, J. Med. Chem., 55, 1721 (2012); https://doi.org/10.1021/jm300031j
G. Turan-Zitouni, A. Özdemir and K. Güven, Arch. Pharm., 338, 96 (2005); https://doi.org/10.1002/ardp.200400935
C.I. Yeo, E.R.T. Tiekink and J. Chew, Inorganics, 9, 48 (2021); https://doi.org/10.3390/inorganics9060048
B. Guo, Z. Ge, T. Cheng and R. Li, Synth. Commun., 31, 3021 (2001); https://doi.org/10.1081/SCC-100105674
S. Levent, U.A. Çevik, B.N. Saglik, Y. Özkay, Ö.D. Can, Ü.D. Özkay and Ü. Uçucu, Phosphorus Sulfur Silicon Relat. Elem., 192, 469 (2017); https://doi.org/10.1080/10426507.2016.1259228
C. Bolzati, M. Cavazza-Ceccato, S. Agostini, F. Refosco, Y. Yamamichi, S. Tokunaga, D. Carta, N. Salvarese, D. Bernardini and G. Bandoli, Bioconjug. Chem., 21, 928 (2010); https://doi.org/10.1021/bc900493e
H. Sudhamani, S.K. Thaslim Basha, S.M.C. Reddy, B. Sreedhar, S. Adam and C. Naga Raju, Res. Chem. Intermed., 42, 7471 (2016); https://doi.org/10.1007/s11164-016-2547-2
A. Asadipour, Z. Shams, K. Eskandari, M.-H. Moshafi, E. Faghih-Mirzaei and Y. Pourshojaei, Res. Chem. Intermed., 44, 1295 (2018); https://doi.org/10.1007/s11164-017-3167-1
K. Biswas, S. Ghosh, P. Ghosh and B. Basu, J. Sulfur Chem., 37, 361 (2016); https://doi.org/10.1080/17415993.2016.1166225
D. Chaturvedi and S. Ray, Tetrahedron Lett., 47, 1307 (2006); https://doi.org/10.1016/j.tetlet.2005.12.079
S. Ahammed, A. Saha and B.C. Ranu, RSC Adv., 2, 6329 (2012); https://doi.org/10.1039/c2ra20856c
S. Ma, J. Liu and X. Xie, Synthesis, 1569 (2012); https://doi.org/10.1055/s-0031-1290811
Q. Sha and Y.-Y. Wei, Org. Biomol. Chem., 11, 5615 (2013); https://doi.org/10.1039/c3ob40745d
N.A. Isley, S. Dobarco and B.H. Lipshutz, Green Chem., 16, 1480 (2014); https://doi.org/10.1039/c3gc42188k
K. Eskandari, B. Karami and S. Khodabakhshi, J. Chem. Res., 38, 600 (2014); https://doi.org/10.3184/174751914X14114871789226
J.H. Clark, Nat. Chem., 1, 12 (2009); https://doi.org/10.1038/nchem.146
A.Z. Halimehjani, F. Ebrahimi, N. Azizi and M.R. Saidi, J. Heterocycl. Chem., 46, 347 (2009); https://doi.org/10.1002/jhet.75