This work is licensed under a Creative Commons Attribution 4.0 International License.
Removal of Lead Ions from Aqueous Solution using Zirconium Dioxide Nanoparticles
Corresponding Author(s) : Tan Tai Nguyen
Asian Journal of Chemistry,
Vol. 35 No. 7 (2023): Vol 35 Issue 7 (2023)
Abstract
This study demonstrated the feasibility of using zirconium dioxide nanoparticles (ZrO2 NPs) synthesixed using a hydrothermal technique for the removal of lead in aqueous solution. The physico-chemical characterization illustrated that the synthesized ZrO2 NPs have a non-uniform shape with an average size of 15 nm, surface area of 41.56 m2 g-1 and adsorption pore width of 3.06 nm. These findings revealed the potential use of ZrO2 NPs for chelating lead ions. The maximum lead adsorption capacity of ZrO2 NPs was obtained around 4.12 mg g-1 at adsorption conditions i.e., stirring speed of 200 rpm and contact time of 120 min. Thus, this method provides a number of advantages, including an efficient and cost-effective method for the removal of lead using ZrO2 NPs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.L. Gutnick and H. Bach, Appl. Microbiol. Biotechnol., 54, 451 (2000); https://doi.org/10.1007/s002530000438
- G. Renard, M. MureseanuOn leave from the Faculty, A. Galarneau, D.A. Lerner and D. Brunel, New J. Chem., 29, 912 (2005); https://doi.org/10.1039/b500302b
- M. Mureseanu, N. Cioatera, I. Trandafir, I. Georgescu, F. Fajula and A. Galarneau, Micropor. Mesopor. Mater., 146, 141 (2011); https://doi.org/10.1016/j.micromeso.2011.04.026
- F. Ge, M.-M. Li, H. Ye and B.-X. Zhao, J. Hazard. Mater., 211-212, 366 (2012); https://doi.org/10.1016/j.jhazmat.2011.12.013
- F. Ke, L.G. Qiu, Y.P. Yuan, F.M. Peng, X. Jiang, A.J. Xie, Y.H. Shen and J.F. Zhu, J. Hazard. Mater., 196, 36 (2011); https://doi.org/10.1016/j.jhazmat.2011.08.069
- B. Volesky and Z.R. Holan, Biotechnol. Prog., 11, 235 (1995); https://doi.org/10.1021/bp00033a001
- K.K. Wong, C.K. Lee, K.S. Low and M.J. Haron, Chemosphere, 50, 23 (2003); https://doi.org/10.1016/S0045-6535(02)00598-2
- A. Kapoor, T. Viraraghavan and D.R. Cullimore, Bioresour. Technol., 70, 95 (1999); https://doi.org/10.1016/S0960-8524(98)00192-8
- W. Lo, H. Chua, K.H. Lam and S.P. Bi, Chemosphere, 39, 2723 (1999); https://doi.org/10.1016/S0045-6535(99)00206-4
- C.L. Ake, K. Mayura, H. Huebner, G.R. Bratton and T.D. Phillips, J. Toxicol. Environ. Health A, 63, 459 (2001); https://doi.org/10.1080/152873901300343489
- A.L. Wani, A. Ara and J.A. Usmani, Interdiscip. Toxicol., 8, 55 (2015); https://doi.org/10.1515/intox-2015-0009
- K. Steenland and P. Boffetta, Am. J. Ind. Med., 38, 295 (2000); https://doi.org/10.1002/1097-0274(200009)38:3<295::AID-AJIM8>3.0.CO;2-L
- C. Wallin, S.B. Sholts, N. Österlund, J. Luo, J. Jarvet, P.M. Roos, L. Ilag, A. Gräslund and S.K.T.S. Wärmländer, Sci. Rep., 7, 14423 (2017); https://doi.org/10.1038/s41598-017-13759-5
- L. Charlet, Y. Chapron, P. Faller, R. Kirsch, A.T. Stone and P.C. Baveye, Coord. Chem. Rev., 256, 2147 (2012); https://doi.org/10.1016/j.ccr.2012.05.012
- P. Zatta, D. Drago, S. Bolognin and S.L. Sensi, Trends Pharmacol. Sci., 30, 346 (2009); https://doi.org/10.1016/j.tips.2009.05.002
- S. Coon, A. Stark, E. Peterson, A. Gloi, G. Kortsha, J. Pounds, D. Chettle and J. Gorell, J. Environ. Health Perspect., 114, 1872 (2006); https://doi.org/10.1289/ehp.9102
- Y. Liu, H. Wang, Y. Cui and N. Chen, Int. J. Environ. Res. Public Health, 20, 3885 (2023); https://doi.org/10.3390/ijerph20053885
- S.W. Lin and R.M.F. Navarro, Chemosphere, 39, 1809 (1999); https://doi.org/10.1016/S0045-6535(99)00074-0
- A. Saeed, M. Iqbal and M.W. Akhtar, J. Hazard. Mater., 117, 65 (2005); https://doi.org/10.1016/j.jhazmat.2004.09.008
- S. Doyurum and A. Celik, J. Hazard. Mater., 138, 22 (2006); https://doi.org/10.1016/j.jhazmat.2006.03.071
- Q. Feng, Q. Lin, F. Gong, S. Sugita and M. Shoya, J. Colloid Interface Sci., 278, 1 (2004); https://doi.org/10.1016/j.jcis.2004.05.030
- V.K. Gupta and I. Ali, J. Colloid Interface Sci., 271, 321 (2004); https://doi.org/10.1016/j.jcis.2003.11.007
- P. Chen, J. Wu, L. Li, Y. Yang and J. Cao, Appl. Surf. Sci., 624, 157165 (2023); https://doi.org/10.1016/j.apsusc.2023.157165
- A.A. Alghamdi, A.B. Al-Odayni, W.S. Saeed, A. Al-Kahtani, F.A. Alharthi and T. Aouak, Materials, 12, 2020 (2019); https://doi.org/10.3390/ma12122020
- K.A. Krishnan, A. Sheela and T.S. Anirudhan, J. Chem. Technol. Biotechnol., 78, 642 (2003); https://doi.org/10.1002/jctb.832
- K.G. Sreejalekshmi, K.A. Krishnan and T.S. Anirudhan, J. Hazard. Mater., 161, 1506 (2009); https://doi.org/10.1016/j.jhazmat.2008.05.002
- E. Pehlivan, T. Altun, S. Cetin and M. Iqbal Bhanger, J. Hazard. Mater., 167, 1203 (2009); https://doi.org/10.1016/j.jhazmat.2009.01.126
- N. Kannan and T.E. Veemaraj, E-J. Chem., 6, 247 (2009); https://doi.org/10.1155/2009/515178
- G. Sharma and M. Naushad, J. Mol. Liq., 310, 113025 (2020); https://doi.org/10.1016/j.molliq.2020.113025
- Q. Zhang, Q. Du, M. Hua, T. Jiao, F. Gao and B. Pan, Environ. Sci. Technol., 47, 6536 (2013); https://doi.org/10.1021/es400919t
- A.F.V. da Silva, A.P. Fagundes, D.L.P. Macuvele, E.F.U. de Carvalho, M. Durazzo, N. Padoin, C. Soares and H.G. Riella, Colloids Surf. A Physicochem. Eng. Asp., 583, 123915 (2019); https://doi.org/10.1016/j.colsurfa.2019.123915
- N. Hoang Lam, H.T. Ma, M.J. Bashir, G. Eppe, P. Avti and T.T. Nguyen, Int. J. Environ. Anal. Chem., 101, 2668 (2021); https://doi.org/10.1080/03067319.2019.1708907
- T.T. Nguyen, H.T. Ma, P. Avti, M.J.K. Bashir, C.A. Ng, L.Y. Wong, H.K. Jun, Q.M. Ngo and N.Q. Tran, J. Anal. Methods Chem., 2019, 6210240 (2019); https://doi.org/10.1155/2019/6210240
- P.K. To, H.T. Ma, L. Nguyen Hoang and T.T. Nguyen, J. Chem., 2020, 8861423 (2020); https://doi.org/10.1155/2020/8861423
- T.T. Nguyen, J. Chem., 2022, 9944126 (2022); https://doi.org/10.1155/2022/9944126
- S.R. Shukla and R.S. Pai, J. Chem. Technol. Biotechnol., 80, 176 (2005); https://doi.org/10.1002/jctb.1176
References
D.L. Gutnick and H. Bach, Appl. Microbiol. Biotechnol., 54, 451 (2000); https://doi.org/10.1007/s002530000438
G. Renard, M. MureseanuOn leave from the Faculty, A. Galarneau, D.A. Lerner and D. Brunel, New J. Chem., 29, 912 (2005); https://doi.org/10.1039/b500302b
M. Mureseanu, N. Cioatera, I. Trandafir, I. Georgescu, F. Fajula and A. Galarneau, Micropor. Mesopor. Mater., 146, 141 (2011); https://doi.org/10.1016/j.micromeso.2011.04.026
F. Ge, M.-M. Li, H. Ye and B.-X. Zhao, J. Hazard. Mater., 211-212, 366 (2012); https://doi.org/10.1016/j.jhazmat.2011.12.013
F. Ke, L.G. Qiu, Y.P. Yuan, F.M. Peng, X. Jiang, A.J. Xie, Y.H. Shen and J.F. Zhu, J. Hazard. Mater., 196, 36 (2011); https://doi.org/10.1016/j.jhazmat.2011.08.069
B. Volesky and Z.R. Holan, Biotechnol. Prog., 11, 235 (1995); https://doi.org/10.1021/bp00033a001
K.K. Wong, C.K. Lee, K.S. Low and M.J. Haron, Chemosphere, 50, 23 (2003); https://doi.org/10.1016/S0045-6535(02)00598-2
A. Kapoor, T. Viraraghavan and D.R. Cullimore, Bioresour. Technol., 70, 95 (1999); https://doi.org/10.1016/S0960-8524(98)00192-8
W. Lo, H. Chua, K.H. Lam and S.P. Bi, Chemosphere, 39, 2723 (1999); https://doi.org/10.1016/S0045-6535(99)00206-4
C.L. Ake, K. Mayura, H. Huebner, G.R. Bratton and T.D. Phillips, J. Toxicol. Environ. Health A, 63, 459 (2001); https://doi.org/10.1080/152873901300343489
A.L. Wani, A. Ara and J.A. Usmani, Interdiscip. Toxicol., 8, 55 (2015); https://doi.org/10.1515/intox-2015-0009
K. Steenland and P. Boffetta, Am. J. Ind. Med., 38, 295 (2000); https://doi.org/10.1002/1097-0274(200009)38:3<295::AID-AJIM8>3.0.CO;2-L
C. Wallin, S.B. Sholts, N. Österlund, J. Luo, J. Jarvet, P.M. Roos, L. Ilag, A. Gräslund and S.K.T.S. Wärmländer, Sci. Rep., 7, 14423 (2017); https://doi.org/10.1038/s41598-017-13759-5
L. Charlet, Y. Chapron, P. Faller, R. Kirsch, A.T. Stone and P.C. Baveye, Coord. Chem. Rev., 256, 2147 (2012); https://doi.org/10.1016/j.ccr.2012.05.012
P. Zatta, D. Drago, S. Bolognin and S.L. Sensi, Trends Pharmacol. Sci., 30, 346 (2009); https://doi.org/10.1016/j.tips.2009.05.002
S. Coon, A. Stark, E. Peterson, A. Gloi, G. Kortsha, J. Pounds, D. Chettle and J. Gorell, J. Environ. Health Perspect., 114, 1872 (2006); https://doi.org/10.1289/ehp.9102
Y. Liu, H. Wang, Y. Cui and N. Chen, Int. J. Environ. Res. Public Health, 20, 3885 (2023); https://doi.org/10.3390/ijerph20053885
S.W. Lin and R.M.F. Navarro, Chemosphere, 39, 1809 (1999); https://doi.org/10.1016/S0045-6535(99)00074-0
A. Saeed, M. Iqbal and M.W. Akhtar, J. Hazard. Mater., 117, 65 (2005); https://doi.org/10.1016/j.jhazmat.2004.09.008
S. Doyurum and A. Celik, J. Hazard. Mater., 138, 22 (2006); https://doi.org/10.1016/j.jhazmat.2006.03.071
Q. Feng, Q. Lin, F. Gong, S. Sugita and M. Shoya, J. Colloid Interface Sci., 278, 1 (2004); https://doi.org/10.1016/j.jcis.2004.05.030
V.K. Gupta and I. Ali, J. Colloid Interface Sci., 271, 321 (2004); https://doi.org/10.1016/j.jcis.2003.11.007
P. Chen, J. Wu, L. Li, Y. Yang and J. Cao, Appl. Surf. Sci., 624, 157165 (2023); https://doi.org/10.1016/j.apsusc.2023.157165
A.A. Alghamdi, A.B. Al-Odayni, W.S. Saeed, A. Al-Kahtani, F.A. Alharthi and T. Aouak, Materials, 12, 2020 (2019); https://doi.org/10.3390/ma12122020
K.A. Krishnan, A. Sheela and T.S. Anirudhan, J. Chem. Technol. Biotechnol., 78, 642 (2003); https://doi.org/10.1002/jctb.832
K.G. Sreejalekshmi, K.A. Krishnan and T.S. Anirudhan, J. Hazard. Mater., 161, 1506 (2009); https://doi.org/10.1016/j.jhazmat.2008.05.002
E. Pehlivan, T. Altun, S. Cetin and M. Iqbal Bhanger, J. Hazard. Mater., 167, 1203 (2009); https://doi.org/10.1016/j.jhazmat.2009.01.126
N. Kannan and T.E. Veemaraj, E-J. Chem., 6, 247 (2009); https://doi.org/10.1155/2009/515178
G. Sharma and M. Naushad, J. Mol. Liq., 310, 113025 (2020); https://doi.org/10.1016/j.molliq.2020.113025
Q. Zhang, Q. Du, M. Hua, T. Jiao, F. Gao and B. Pan, Environ. Sci. Technol., 47, 6536 (2013); https://doi.org/10.1021/es400919t
A.F.V. da Silva, A.P. Fagundes, D.L.P. Macuvele, E.F.U. de Carvalho, M. Durazzo, N. Padoin, C. Soares and H.G. Riella, Colloids Surf. A Physicochem. Eng. Asp., 583, 123915 (2019); https://doi.org/10.1016/j.colsurfa.2019.123915
N. Hoang Lam, H.T. Ma, M.J. Bashir, G. Eppe, P. Avti and T.T. Nguyen, Int. J. Environ. Anal. Chem., 101, 2668 (2021); https://doi.org/10.1080/03067319.2019.1708907
T.T. Nguyen, H.T. Ma, P. Avti, M.J.K. Bashir, C.A. Ng, L.Y. Wong, H.K. Jun, Q.M. Ngo and N.Q. Tran, J. Anal. Methods Chem., 2019, 6210240 (2019); https://doi.org/10.1155/2019/6210240
P.K. To, H.T. Ma, L. Nguyen Hoang and T.T. Nguyen, J. Chem., 2020, 8861423 (2020); https://doi.org/10.1155/2020/8861423
T.T. Nguyen, J. Chem., 2022, 9944126 (2022); https://doi.org/10.1155/2022/9944126
S.R. Shukla and R.S. Pai, J. Chem. Technol. Biotechnol., 80, 176 (2005); https://doi.org/10.1002/jctb.1176