Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Force Constant Optimization of trans Nitrous Acid Based on Classical Wilson Method Using Root Mean Square as Measuring Criteria
Asian Journal of Chemistry,
Vol. 28 No. 10 (2016): Vol 28 Issue 10
Abstract
Optimization method for the force constants based on the classical Wilson method but use the gold method for bracketing the force constant as a function of the fitness of the calculated and experimental spectra determined by the root mean square criteria. The optimization of force constants of trans nitrous acid has been carried out using the Wilson’s methods of F and G matrices and quantum mechanics. The minimum root mean square (rms) by GF matrix methods was found to be 0.5121 cm-1 for HONO, 1.4283 cm-1 for HON15O, 3.6561 cm-1 for HO18NO18, 14.4696 cm-1 for DONO and 13.4152 cm-1 for DON15O. The (root mean square) by quantum mechanics was found to be 180.3, 53.09, 29.20 and 27.16 cm-1 for trans nitrous acid by PM3, MP2/6-31G(d), B3LYP/6-31+G(d) and B3LY/6-31G(d), respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E.B. Wilson, J.C. Decius and P.C. Cross, Molecular Vibrations, McGraw Hill, London (1955).
- E.B. Wilson, J. Chem. Phys., 9, 76 (1941); doi:10.1063/1.1750829.
- F.A. Cotton, Chemical Application of Group Theory, John Wiley & Sons, New York, edn 2 (1971).
- G. Turrell, Infrared and Raman Spectra of Crystals, Academic Press, London (1972).
- D.M. Seeger, C. Korzeniewski and W. Kowalchyk, J. Phys. Chem., 95, 6871 (1991); doi:10.1021/j100171a026.
- A.P. Scott and L. Radom, J. Phys. Chem., 100, 16502 (1996); doi:10.1021/jp960976r.
- J.M. Coffin and J. Pulay, J. Phys. Chem., 95, 118 (1991); doi:10.1021/j100154a027.
- T.P. Hamilton and P. Pulay, J. Phys. Chem., 93, 2341 (1989); doi:10.1021/j100343a029.
- E.D. Simandiras, J.E. Rice, T.J. Lee, R.D. Amos and N.C. Handy, J. Chem. Phys., 88, 3187 (1988); doi:10.1063/1.453963.
- G. Fogarasi and P. Pulay, J. Mol. Struct., 39, 275 (1977); doi:10.1016/0022-2860(77)85097-7.
- E.F. Healy and A. Holder, J. Mol. Struct., 281, 141 (1993); doi:10.1016/0166-1280(93)87071-K.
- J.A. Pople, H.B. Schleged, R. Krishnan, D.J. Defrees, J.S. Binkley, M.J. Frisch, R.A. Whiteside, R.F. Hout and W.J. Hehre, Int. J. Quantum Chem. Quantum Chem. Symp., 15, 269 (1981).
- R.F. Hout, B.A. Levi and W.J. Hehre, J. Comput. Chem., 3, 234 (1982); doi:10.1002/jcc.540030216.
- L.A. Curtiss, K. Raghavachari, G.W. Trucks and J.A. Pople, J. Chem. Phys., 94, 7221 (1991); doi:10.1063/1.460205.
- G. Rauhut and P. Pulay, J. Am. Chem. Soc., 117, 4167 (1995); doi:10.1021/ja00119a034.
- B.G. Johnson, P.M.W. Gill and J.A. Pople, J. Chem. Phys., 98, 5612 (1993); doi:10.1063/1.464906.
- G. Rauhut and R. Pulay, J. Phys. Chem., 99, 3093 (1995); doi:10.1021/j100010a019.
- J.W. Finley and P.J. Stephens, J. Mol. Struct., 357, 225 (1995); doi:10.1016/0166-1280(95)04333-8.
- D.J. Finnigan, A.P. Cox, A.H. Brittain and J.G. Smith, J. Chem. Soc., Faraday Trans. II, 68, 548 (1972);doi:10.1039/f29726800548.
- S. Skaarup and J.E. Boggs, J. Mol. Struct., 30, 389 (1976); doi:10.1016/0022-2860(76)87015-9.
- R. Varma and R.F. Curl, J. Phys. Chem., 80, 402 (1976); doi:10.1021/j100545a013.
- A. Palm, J. Chem. Phys., 26, 855 (1957); doi:10.1063/1.1743420.
- G.E. McGraw, D.L. Bernitt and L.C. Histatsune, J. Chem. Phys., 45, 1392 (1966); doi:10.1063/1.1727772.
- P. Ling, A.I. Boldyrev, J. Simons and C.A. Wight, J. Am. Chem. Soc., 120, 12327 (1998); doi:10.1021/ja9824223.
- F. Glauco, G.A. Bauerfeldt and C.D.S. Edilson, J. Braz. Chem. Soc., 16, 190 (2005); doi:10.1590/S0103-50532005000200010.
- H. Hirohara, M. Nakayama and N. Ise, J. Chem. Soc., Faraday Trans. 1, 68, 58 (1972); doi:10.1039/f19726800058.
- C.C. Costain and J.M. Dowling, J. Chem. Phys., 32, 158 (1960); doi:10.1063/1.1700891.
- The MathWorks Inc. MATLAB 7.0 (R14SP2), The MathWorks Inc. (2005).
- J.J.P. Stewart, MOPAC 2007, Stewart Computational Chemistry, Version 8.211W (2007); web:HTTP://OpenMOPAC.net.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09 Program, Revision A.02, Gaussian, Inc., Wallingford CT (2009).
- C.M. Deeley and I.M. Mills, Mol. Phys., 54, 23 (1985); doi:10.1080/00268978500100021.
References
E.B. Wilson, J.C. Decius and P.C. Cross, Molecular Vibrations, McGraw Hill, London (1955).
E.B. Wilson, J. Chem. Phys., 9, 76 (1941); doi:10.1063/1.1750829.
F.A. Cotton, Chemical Application of Group Theory, John Wiley & Sons, New York, edn 2 (1971).
G. Turrell, Infrared and Raman Spectra of Crystals, Academic Press, London (1972).
D.M. Seeger, C. Korzeniewski and W. Kowalchyk, J. Phys. Chem., 95, 6871 (1991); doi:10.1021/j100171a026.
A.P. Scott and L. Radom, J. Phys. Chem., 100, 16502 (1996); doi:10.1021/jp960976r.
J.M. Coffin and J. Pulay, J. Phys. Chem., 95, 118 (1991); doi:10.1021/j100154a027.
T.P. Hamilton and P. Pulay, J. Phys. Chem., 93, 2341 (1989); doi:10.1021/j100343a029.
E.D. Simandiras, J.E. Rice, T.J. Lee, R.D. Amos and N.C. Handy, J. Chem. Phys., 88, 3187 (1988); doi:10.1063/1.453963.
G. Fogarasi and P. Pulay, J. Mol. Struct., 39, 275 (1977); doi:10.1016/0022-2860(77)85097-7.
E.F. Healy and A. Holder, J. Mol. Struct., 281, 141 (1993); doi:10.1016/0166-1280(93)87071-K.
J.A. Pople, H.B. Schleged, R. Krishnan, D.J. Defrees, J.S. Binkley, M.J. Frisch, R.A. Whiteside, R.F. Hout and W.J. Hehre, Int. J. Quantum Chem. Quantum Chem. Symp., 15, 269 (1981).
R.F. Hout, B.A. Levi and W.J. Hehre, J. Comput. Chem., 3, 234 (1982); doi:10.1002/jcc.540030216.
L.A. Curtiss, K. Raghavachari, G.W. Trucks and J.A. Pople, J. Chem. Phys., 94, 7221 (1991); doi:10.1063/1.460205.
G. Rauhut and P. Pulay, J. Am. Chem. Soc., 117, 4167 (1995); doi:10.1021/ja00119a034.
B.G. Johnson, P.M.W. Gill and J.A. Pople, J. Chem. Phys., 98, 5612 (1993); doi:10.1063/1.464906.
G. Rauhut and R. Pulay, J. Phys. Chem., 99, 3093 (1995); doi:10.1021/j100010a019.
J.W. Finley and P.J. Stephens, J. Mol. Struct., 357, 225 (1995); doi:10.1016/0166-1280(95)04333-8.
D.J. Finnigan, A.P. Cox, A.H. Brittain and J.G. Smith, J. Chem. Soc., Faraday Trans. II, 68, 548 (1972);doi:10.1039/f29726800548.
S. Skaarup and J.E. Boggs, J. Mol. Struct., 30, 389 (1976); doi:10.1016/0022-2860(76)87015-9.
R. Varma and R.F. Curl, J. Phys. Chem., 80, 402 (1976); doi:10.1021/j100545a013.
A. Palm, J. Chem. Phys., 26, 855 (1957); doi:10.1063/1.1743420.
G.E. McGraw, D.L. Bernitt and L.C. Histatsune, J. Chem. Phys., 45, 1392 (1966); doi:10.1063/1.1727772.
P. Ling, A.I. Boldyrev, J. Simons and C.A. Wight, J. Am. Chem. Soc., 120, 12327 (1998); doi:10.1021/ja9824223.
F. Glauco, G.A. Bauerfeldt and C.D.S. Edilson, J. Braz. Chem. Soc., 16, 190 (2005); doi:10.1590/S0103-50532005000200010.
H. Hirohara, M. Nakayama and N. Ise, J. Chem. Soc., Faraday Trans. 1, 68, 58 (1972); doi:10.1039/f19726800058.
C.C. Costain and J.M. Dowling, J. Chem. Phys., 32, 158 (1960); doi:10.1063/1.1700891.
The MathWorks Inc. MATLAB 7.0 (R14SP2), The MathWorks Inc. (2005).
J.J.P. Stewart, MOPAC 2007, Stewart Computational Chemistry, Version 8.211W (2007); web:HTTP://OpenMOPAC.net.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09 Program, Revision A.02, Gaussian, Inc., Wallingford CT (2009).
C.M. Deeley and I.M. Mills, Mol. Phys., 54, 23 (1985); doi:10.1080/00268978500100021.