This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) Bioplastic with Bio-based Isosorbide Diester
Corresponding Author(s) : Yodthong Baimark
Asian Journal of Chemistry,
Vol. 35 No. 7 (2023): Vol 35 Issue 7 (2023)
Abstract
In situ chain-extended poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) block copolymers synthesized by ring-opening polymerization of L-lactide in the presence of chain extender were more flexible than PLLA. However, flexibility of PLLA-PEG-PLLA requires further improvement to broaden its applications. Herein, plasticization of PLLA-PEG-PLLA with an isosorbide diester bio-based plasticizer (5-20 %wt) is described. PLLA/isosorbide diester blends were also prepared for comparison. The blends prepared via melt blending revealed that isosorbide diester showed good phase compatibility with both the PLLA and PLLA-PEG-PLLA. The addition of isosorbide diester significantly enhanced plastic deformation of cryo-fracture surfaces for PLLA-PEG-PLLA-based blends whereas the plastic deformation was started at 20 %wt isosorbide diester for PLLA-based blends. Crystallization properties and thermal stability of PLLA-PEG-PLLA greatly improved after the addition of isosorbide diester but did not increase the thermal stability for PLLA-based blends. The strains at break of the PLLA-PEG-PLLA-based blends containing 5 %wt, 10 %wt and 20 %wt isosorbide diester were 89.9%, 145.3% and 110.5%, respectively: these were higher than the pure PLLA-PEG-PLLA (59.8%). The plastic deformation, thermal stability and strain at break of the PLLA-PEG-PLLA-based blends increased greatly with content of isosorbide diester, reaching a maximum at 10 %wt isosorbide diester. Therefore, isosorbide diester is promising as a bio-based plasticizer for PLLA-PEG-PLLA to produce highly flexible PLLA-based bioplastics.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Baimark, W. Rungseesantivanon and N. Prakymoramas, E-Polymers, 20, 423 (2020); https://doi.org/10.1515/epoly-2020-0047
- K.J. Jem and B. Tan, Adv. Ind. Eng. Polym. Res., 3, 60 (2020); https://doi.org/10.1016/j.aiepr.2020.01.002
- W. Thongsomboon, P. Srihanam and Y. Baimark, Int. J. Biol. Macromol., 230, 123172 (2023); https://doi.org/10.1016/j.ijbiomac.2023.123172
- Y. Baimark and Y. Srisuwan, J. Elastomers Plast., 52, 142 (2020); https://doi.org/10.1177/0095244319827993
- S. Saeidlou, M.A. Huneault, H. Li and C.B. Park, Prog. Polym. Sci., 37, 1657 (2012); https://doi.org/10.1016/j.progpolymsci.2012.07.005
- R.N. Darie-Nita, C. Vasile, A. Irimia, R. Lipsa and M. Rapa, J. Appl. Polym. Sci., 133, 43223 (2016); https://doi.org/10.1002/app.43223
- D. Li, Y. Jiang, S. Lv, X. Liu, J. Gu, Q. Chen and Y. Zhang, PLoS One, 13, e0193520 (2018); https://doi.org/10.1371/journal.pone.0193520
- S. Karimi, I. Ghasemi, F. Abbassi-Sourki, M. Samara and N.R. Demarquette, ACS Omega, 7, 31197 (2022); https://doi.org/10.1021/acsomega.2c03397
- R.J. Awale, F.B. Ali, A.S. Azmi, N.I.M. Puad, H. Anuar and A. Hassan, Polymers, 10, 977 (2018); https://doi.org/10.3390/polym10090977
- Y. Yang, Z. Xiong, L. Zhang, Z. Tang, R. Zhang and J. Zhu, Mater. Des., 91, 262 (2016); https://doi.org/10.1016/j.matdes.2015.11.065
- E. Fortunati, D. Puglia, A. Iannoni, A. Terenzi, J.M. Kenny and L. Torre, Materials, 10, 809 (2017); https://doi.org/10.3390/ma10070809
- H. Moche, A. Chentouf, S. Neves, J.-M. Corpart and F. Nesslany, J. Toxicol., 2021, 8815202 (2021); https://doi.org/10.1155/2021/8815202
- S. Simar-Mentie‘res, F. Nesslany, M.-L. Sola, S. Mortier, J.-M. Raimbault, F. Gondelle, L. Chabot, P. Pandard, D. Wils and A. Chentouf, J. Toxicol., 2021, 9970896 (2021); https://doi.org/10.1155/2021/9970896
- P. Srihanam, W. Thongsomboon and Y. Baimark, Polymers, 15, 301 (2023); https://doi.org/10.3390/polym15020301
- D. Chauliac, P.C. Pullammanappallil, L.O. Ingram and K.T. Shanmugam, J. Polym. Environ., 28, 1503 (2020); https://doi.org/10.1007/s10924-020-01710-1
- T. Phromsopha and Y. Baimark, Asian J. Chem., 34, 569 (2022); https://doi.org/10.14233/ajchem.2022.23492
- L. Li, Z.-Q. Cao, R.-Y. Bao, B.-H. Xie, M.-B. Yang and W. Yang, Eur. Polym. J., 97, 272 (2017); https://doi.org/10.1016/j.eurpolymj.2017.10.025
- J. Tian, Z. Cao, S. Qian, Y. Xia, J. Zhang, Y. Kong, K. Sheng, Y. Zhang, Y. Wan and J. Takahashi, Nanotechnol. Rev., 11, 2469 (2022); https://doi.org/10.1515/ntrev-2022-0142
- J. Gomez-Caturla, I. Dominguez-Candela, M.P. Medina-Casas, R. Balart, J. Ivorra-Martinez, V. Moreno and D. Garcia-Garcia, Macromol. Mater. Eng., 2200694 (2023); https://doi.org/10.1002/mame.202200694
- T. Tábi, T. Ageyeva and J.G. Kovács, Mater. Today Commun., 32, 103936 (2022); https://doi.org/10.1016/j.mtcomm.2022.103936
- X. Zhang, K.L. Singfield and H. Ye, Polym. Bull., 73, 3437 (2016); https://doi.org/10.1007/s00289-016-1665-8
- X. Yun, X. Li, Y. Jin, W. Sun and T. Dong, Polym. Sci. Ser. A, 60, 141 (2018); https://doi.org/10.1134/S0965545X18020141
- I. Pillin, N. Montrelay and Y. Grohens, Polymer, 47, 4676 (2006); https://doi.org/10.1016/j.polymer.2006.04.013
- M. Cuénoud, P.-E. Bourban, C.J.G. Plummer and J.A.E. Månson, J. Appl. Polym. Sci., 121, 2078 (2011); https://doi.org/10.1002/app.33835
- Y. Hu, Y.S. Hu, V. Topolkaraev, A. Hiltner and E. Baer, Polymer, 44, 5681 (2003); https://doi.org/10.1016/S0032-3861(03)00609-8
- H. Li and M.A. Huneault, Polymer, 48, 6855 (2007); https://doi.org/10.1016/j.polymer.2007.09.020
- C.G. Mothe, A.D. Azevedo, W.S. Drumond and S.H. Wang, J. Therm. Anal. Calorim., 101, 229 (2010); https://doi.org/10.1007/s10973-009-0589-z
- A.K. Mohapatra, S. Mohanty and S.K. Nayak, Polym. Compos., 35, 283 (2014); https://doi.org/10.1002/pc.22660
References
Y. Baimark, W. Rungseesantivanon and N. Prakymoramas, E-Polymers, 20, 423 (2020); https://doi.org/10.1515/epoly-2020-0047
K.J. Jem and B. Tan, Adv. Ind. Eng. Polym. Res., 3, 60 (2020); https://doi.org/10.1016/j.aiepr.2020.01.002
W. Thongsomboon, P. Srihanam and Y. Baimark, Int. J. Biol. Macromol., 230, 123172 (2023); https://doi.org/10.1016/j.ijbiomac.2023.123172
Y. Baimark and Y. Srisuwan, J. Elastomers Plast., 52, 142 (2020); https://doi.org/10.1177/0095244319827993
S. Saeidlou, M.A. Huneault, H. Li and C.B. Park, Prog. Polym. Sci., 37, 1657 (2012); https://doi.org/10.1016/j.progpolymsci.2012.07.005
R.N. Darie-Nita, C. Vasile, A. Irimia, R. Lipsa and M. Rapa, J. Appl. Polym. Sci., 133, 43223 (2016); https://doi.org/10.1002/app.43223
D. Li, Y. Jiang, S. Lv, X. Liu, J. Gu, Q. Chen and Y. Zhang, PLoS One, 13, e0193520 (2018); https://doi.org/10.1371/journal.pone.0193520
S. Karimi, I. Ghasemi, F. Abbassi-Sourki, M. Samara and N.R. Demarquette, ACS Omega, 7, 31197 (2022); https://doi.org/10.1021/acsomega.2c03397
R.J. Awale, F.B. Ali, A.S. Azmi, N.I.M. Puad, H. Anuar and A. Hassan, Polymers, 10, 977 (2018); https://doi.org/10.3390/polym10090977
Y. Yang, Z. Xiong, L. Zhang, Z. Tang, R. Zhang and J. Zhu, Mater. Des., 91, 262 (2016); https://doi.org/10.1016/j.matdes.2015.11.065
E. Fortunati, D. Puglia, A. Iannoni, A. Terenzi, J.M. Kenny and L. Torre, Materials, 10, 809 (2017); https://doi.org/10.3390/ma10070809
H. Moche, A. Chentouf, S. Neves, J.-M. Corpart and F. Nesslany, J. Toxicol., 2021, 8815202 (2021); https://doi.org/10.1155/2021/8815202
S. Simar-Mentie‘res, F. Nesslany, M.-L. Sola, S. Mortier, J.-M. Raimbault, F. Gondelle, L. Chabot, P. Pandard, D. Wils and A. Chentouf, J. Toxicol., 2021, 9970896 (2021); https://doi.org/10.1155/2021/9970896
P. Srihanam, W. Thongsomboon and Y. Baimark, Polymers, 15, 301 (2023); https://doi.org/10.3390/polym15020301
D. Chauliac, P.C. Pullammanappallil, L.O. Ingram and K.T. Shanmugam, J. Polym. Environ., 28, 1503 (2020); https://doi.org/10.1007/s10924-020-01710-1
T. Phromsopha and Y. Baimark, Asian J. Chem., 34, 569 (2022); https://doi.org/10.14233/ajchem.2022.23492
L. Li, Z.-Q. Cao, R.-Y. Bao, B.-H. Xie, M.-B. Yang and W. Yang, Eur. Polym. J., 97, 272 (2017); https://doi.org/10.1016/j.eurpolymj.2017.10.025
J. Tian, Z. Cao, S. Qian, Y. Xia, J. Zhang, Y. Kong, K. Sheng, Y. Zhang, Y. Wan and J. Takahashi, Nanotechnol. Rev., 11, 2469 (2022); https://doi.org/10.1515/ntrev-2022-0142
J. Gomez-Caturla, I. Dominguez-Candela, M.P. Medina-Casas, R. Balart, J. Ivorra-Martinez, V. Moreno and D. Garcia-Garcia, Macromol. Mater. Eng., 2200694 (2023); https://doi.org/10.1002/mame.202200694
T. Tábi, T. Ageyeva and J.G. Kovács, Mater. Today Commun., 32, 103936 (2022); https://doi.org/10.1016/j.mtcomm.2022.103936
X. Zhang, K.L. Singfield and H. Ye, Polym. Bull., 73, 3437 (2016); https://doi.org/10.1007/s00289-016-1665-8
X. Yun, X. Li, Y. Jin, W. Sun and T. Dong, Polym. Sci. Ser. A, 60, 141 (2018); https://doi.org/10.1134/S0965545X18020141
I. Pillin, N. Montrelay and Y. Grohens, Polymer, 47, 4676 (2006); https://doi.org/10.1016/j.polymer.2006.04.013
M. Cuénoud, P.-E. Bourban, C.J.G. Plummer and J.A.E. Månson, J. Appl. Polym. Sci., 121, 2078 (2011); https://doi.org/10.1002/app.33835
Y. Hu, Y.S. Hu, V. Topolkaraev, A. Hiltner and E. Baer, Polymer, 44, 5681 (2003); https://doi.org/10.1016/S0032-3861(03)00609-8
H. Li and M.A. Huneault, Polymer, 48, 6855 (2007); https://doi.org/10.1016/j.polymer.2007.09.020
C.G. Mothe, A.D. Azevedo, W.S. Drumond and S.H. Wang, J. Therm. Anal. Calorim., 101, 229 (2010); https://doi.org/10.1007/s10973-009-0589-z
A.K. Mohapatra, S. Mohanty and S.K. Nayak, Polym. Compos., 35, 283 (2014); https://doi.org/10.1002/pc.22660