This work is licensed under a Creative Commons Attribution 4.0 International License.
Novel Dihydropyrimidinones: Molecular Docking, Synthesis and Anti-Neoplastic Activity
Corresponding Author(s) : M.P. Toraskar
Asian Journal of Chemistry,
Vol. 35 No. 7 (2023): Vol 35 Issue 7 (2023)
Abstract
Recent years have showed great interest in the synthesis of pyrimidinone and its applications in medicinal chemistry. Chalcones were synthesized through the Claisen-Schmidt condensation reaction between substituted aldehydes and acetone in the presence of LiOH to produce dihydropyrimidinones, which were then subjected to urea treatment in the presence of strong HCl to give dihydropyrimidinone derivatives. The antiproliferative activity of synthesized components was screened against MCF7 and MCA-MB-231 cancer cell lines. Compound 4A1 was found to have promising anticancer activity against both cell lines. Overall, the approach makes it possible to synthesize dihydropyrimidinones with potential anticancer properties.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Kaur, S. Chaudhary, K. Kumar, M.K. Gupta and R.K. Rawal, Eur. J. Med. Chem., 132, 108 (2017); https://doi.org/10.1016/j.ejmech.2017.03.025
- M.L.H. Santana, F.T. Masson, L.A. Simeoni and M. Homem-de-Mello, Eur. J. Med. Chem., 143, 1779 (2018); https://doi.org/10.1016/j.ejmech.2017.10.073
- C.O. Kappe, Acc. Chem. Res., 33, 879 (2000); https://doi.org/10.1021/ar000048h
- R. Soni, G. Singh, R. Kaur, G. Kaur, R.K. Gill and J. Bariwal, Chem. Biol., 4, 163 (2014).
- M.M. Karelson, A.R. Katritzky, M. Szafran and M.C. Zerner, J. Org. Chem., 54, 6030 (1989); https://doi.org/10.1021/jo00287a012
- V. Sarli and A. Giannis, Clin. Cancer Res., 14, 7583 (2008); https://doi.org/10.1158/1078-0432.CCR-08-0120
- A. Blangy, H.A. Lane, P. d’Hérin, M. Harper, M. Kress and E.A. Niggt, Cell, 83, 1159 (1995); https://doi.org/10.1016/0092-8674(95)90142-6
- H.V. Goodson, S.J. Kang and S.A. Endow, J. Cell Sci., 107, 1875 (1994); https://doi.org/10.1242/jcs.107.7.1875
- C.E. Walczak and T.J. Mitchison, Cell, 85, 943 (1996); https://doi.org/10.1016/S0092-8674(00)81295-7
- H. Wakui, N. Yamamoto, S. Kitazono, H. Mizugaki, S. Nakamichi, Y. Fujiwara, H. Nokihara, Y. Yamada, K. Suzuki, H. Kanda, S. Akinaga and T. Tamura, Cancer Chemother. Pharmacol., 74, 15 (2014); https://doi.org/10.1007/s00280-014-2467-z
- S. Ding, N. Xing, J. Lu, H. Zhang, K. Nishizawa, S. Liu, X. Yuan, Y. Qin, Y. Liu, O. Ogawa and H. Nishiyama, Int. J. Urol., 18, 432 (2011); https://doi.org/10.1111/j.1442-2042.2011.02751.x
- A. Masuda, K. Maeno, T. Nakagawa, H. Saito and T. Takahashi, Am. J. Pathol., 163, 1109 (2003); https://doi.org/10.1016/S0002-9440(10)63470-0
- U. Soumyanarayanan, V.G. Bhat, S.S. Kar and J.A. Mathew, Org. Med. Chem. Lett., 1, 1 (2012).
- U.T. Mayer, T.M. Kapoor, S.J. Haggarty, R.W. King, S.L. Schreiber and T.J. Mitchison, Science, 286, 971 (1999); https://doi.org/10.1126/science.286.5441.971
- M. Gartner, N. SunderPlassmann, J. Seiler, M. Utz, I. Vernos, T. Surrey and A. Giannis, ChemBioChem, 6, 1173 (2005); https://doi.org/10.1002/cbic.200500005
- R.R. Shinde and M. Farooqui, Polycycl. Aromat. Compd., 42, 6475 (2022); https://doi.org/10.1080/10406638.2021.1984262
- C. Zhuang, W. Zhang, C. Sheng, W. Zhang, C. Xing and Z. Miao, Chem. Rev., 117, 7762 (2017); https://doi.org/10.1021/acs.chemrev.7b00020
- S.D. Bajaj, O.A. Mahodaya and P.V. Tekade, Int. J. Res. Biosci. Agric. Technol., 2, 24 (2014).
- A. Desai, K.B. Vyas, R.N. Patel and K.S. Nimavat, Int. J. Pharm. Res. Scholars, 2, 1 (2016).
References
R. Kaur, S. Chaudhary, K. Kumar, M.K. Gupta and R.K. Rawal, Eur. J. Med. Chem., 132, 108 (2017); https://doi.org/10.1016/j.ejmech.2017.03.025
M.L.H. Santana, F.T. Masson, L.A. Simeoni and M. Homem-de-Mello, Eur. J. Med. Chem., 143, 1779 (2018); https://doi.org/10.1016/j.ejmech.2017.10.073
C.O. Kappe, Acc. Chem. Res., 33, 879 (2000); https://doi.org/10.1021/ar000048h
R. Soni, G. Singh, R. Kaur, G. Kaur, R.K. Gill and J. Bariwal, Chem. Biol., 4, 163 (2014).
M.M. Karelson, A.R. Katritzky, M. Szafran and M.C. Zerner, J. Org. Chem., 54, 6030 (1989); https://doi.org/10.1021/jo00287a012
V. Sarli and A. Giannis, Clin. Cancer Res., 14, 7583 (2008); https://doi.org/10.1158/1078-0432.CCR-08-0120
A. Blangy, H.A. Lane, P. d’Hérin, M. Harper, M. Kress and E.A. Niggt, Cell, 83, 1159 (1995); https://doi.org/10.1016/0092-8674(95)90142-6
H.V. Goodson, S.J. Kang and S.A. Endow, J. Cell Sci., 107, 1875 (1994); https://doi.org/10.1242/jcs.107.7.1875
C.E. Walczak and T.J. Mitchison, Cell, 85, 943 (1996); https://doi.org/10.1016/S0092-8674(00)81295-7
H. Wakui, N. Yamamoto, S. Kitazono, H. Mizugaki, S. Nakamichi, Y. Fujiwara, H. Nokihara, Y. Yamada, K. Suzuki, H. Kanda, S. Akinaga and T. Tamura, Cancer Chemother. Pharmacol., 74, 15 (2014); https://doi.org/10.1007/s00280-014-2467-z
S. Ding, N. Xing, J. Lu, H. Zhang, K. Nishizawa, S. Liu, X. Yuan, Y. Qin, Y. Liu, O. Ogawa and H. Nishiyama, Int. J. Urol., 18, 432 (2011); https://doi.org/10.1111/j.1442-2042.2011.02751.x
A. Masuda, K. Maeno, T. Nakagawa, H. Saito and T. Takahashi, Am. J. Pathol., 163, 1109 (2003); https://doi.org/10.1016/S0002-9440(10)63470-0
U. Soumyanarayanan, V.G. Bhat, S.S. Kar and J.A. Mathew, Org. Med. Chem. Lett., 1, 1 (2012).
U.T. Mayer, T.M. Kapoor, S.J. Haggarty, R.W. King, S.L. Schreiber and T.J. Mitchison, Science, 286, 971 (1999); https://doi.org/10.1126/science.286.5441.971
M. Gartner, N. SunderPlassmann, J. Seiler, M. Utz, I. Vernos, T. Surrey and A. Giannis, ChemBioChem, 6, 1173 (2005); https://doi.org/10.1002/cbic.200500005
R.R. Shinde and M. Farooqui, Polycycl. Aromat. Compd., 42, 6475 (2022); https://doi.org/10.1080/10406638.2021.1984262
C. Zhuang, W. Zhang, C. Sheng, W. Zhang, C. Xing and Z. Miao, Chem. Rev., 117, 7762 (2017); https://doi.org/10.1021/acs.chemrev.7b00020
S.D. Bajaj, O.A. Mahodaya and P.V. Tekade, Int. J. Res. Biosci. Agric. Technol., 2, 24 (2014).
A. Desai, K.B. Vyas, R.N. Patel and K.S. Nimavat, Int. J. Pharm. Res. Scholars, 2, 1 (2016).