This work is licensed under a Creative Commons Attribution 4.0 International License.
Radical Chemistry: A Brief History and Overview
Corresponding Author(s) : A. Mandal
Asian Journal of Chemistry,
Vol. 35 No. 7 (2023): Vol 35 Issue 7 (2023)
Abstract
The radical chemistry is a fascinating field of research and a review of the applications till date is ready guidance to research groups exploring the area. From the vast field of radical research, the present work mainly is concentrated on biological processes involving metal complexes with bound radicals with the superoxide species as the principal focus. This review on the aspects are distinctly divided into three categories for convenience and ready reference.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.L. Lavoisier, Traité élémentaire de chimie, Cuchet, Paris 1789, vol. 1, English Translation by R. Kerr, reprinted by Dover Press: New York (1965).
- M. Gomberg, J. Am. Chem. Soc., 23, 109 (1901); https://doi.org/10.1021/ja02028a005
- B. Halliwell and J.M.C. Gutteridge, Free Radicals in Biology and Medicine, Clarendon Press: Oxford, Edn. 2 (1999).
- A. Ito, Y. Nakano, M. Urabe, T. Kato and K. Tanaka, J. Am. Chem. Soc., 128, 2948 (2006); https://doi.org/10.1021/ja056318e
- G. Nagendrappa, Resonance, 10, 72 (2005); https://doi.org/10.1007/BF02835925
- L. Wojnarovits, J. Chem. Educ., 88, 1658 (2011); https://doi.org/10.1021/ed1011053
- K. Bagchi and S. Puri, East. Mediterr. Health J., 4, 350 (1998); https://doi.org/10.26719/1998.4.2.350
- D.H. Hey and W.A. Waters, Chem. Rev., 21, 169 (1937); https://doi.org/10.1021/cr60068a006
- J.L. Redpath, J. Chem. Educ., 58, 131 (1981); https://doi.org/10.1021/ed058p131
- S. Fukuzumi, K. Ohkubo and Y. Morimoto, Phys. Chem. Chem. Phys., 14, 8472 (2012); https://doi.org/10.1039/c2cp40459a
- M. Gomberg, J. Chem. Educ., 9, 439 (1932); https://doi.org/10.1021/ed009p439
- P.O.P. Ts’o, J.C. Barret, W.J. Csspary, S.A. Lesko, R.J. Lorentzen and L.M. Sehechtman, Eds.: K.C. Smith, Aging, Carcinogenesis and Radiation Biology, Plenum Press: New York and London (1976).
- S. Licht, G.J. Gerfen and J. Stubbe, Science, 271, 477 (1996); https://doi.org/10.1126/science.271.5248.477
- R. Banerjee, Chem. Rev., 103, 2083 (2003); https://doi.org/10.1021/cr0204395
- J. Knappe and A.F. Volker Wagner, Adv. Protein Chem., 58, 277 (2001); https://doi.org/10.1016/S0065-3233(01)58007-9
- P. Dorlet, S.A. Seibold, G.T. Babcock, G.J. Gerfen, W.L. Smith, A.L. Tsai and S. Un, Biochemistry, 41, 6107 (2002); https://doi.org/10.1021/bi015871f
- J. Cheek and J.B. Broderick, J. Am. Chem. Soc., 124, 2860 (2002); https://doi.org/10.1021/ja017784g
- O.T. Magnusson and P.A. Frey, Biochemistry, 41, 1695 (2002); https://doi.org/10.1021/bi011947w
- J.W. Whittaker, Chem. Rev., 103, 2347 (2003); https://doi.org/10.1021/cr020425z
- R.M.J. Palmer, D.S. Ashton and S. Moncada, Nature, 333, 664 (1988); https://doi.org/10.1038/333664a0
- R.S. Sohal and R. Weindruch, Science, 128, 379 (1996); https://doi.org/10.1126/science.273.5271.59
- Y.Z. Fang and R.L. Zheng, Theory and Application of Free Radical Biology, Beijing Scientific Press, pp. 647 (2002).
- Y.Z. Fang, Free Radicals and Nutrition, In: Theory and Application of Free Radical Biology, Beijing Scientific Press (2002).
- D.L. Gilbert and N.Y. Ann, Ann. N. Y. Acad. Sci., 899, 1 (2000); https://doi.org/10.1111/j.1749-6632.2000.tb06172.x
- Y.Z. Fang, C.P. Sun, X.H. Tian and J.-H. Cong, Am. J. Chin. Med., 26, 153 (1998); https://doi.org/10.1142/S0192415X98000208
- G. Wu and C.J. Meininger, Annu. Rev. Nutr., 22, 61 (2002); https://doi.org/10.1146/annurev.nutr.22.110901.145329
- M.J. Jackson, Proc. Nutr. Soc., 58, 1001 (1999); https://doi.org/10.1017/S0029665199001317
- A. Phaniendra, D.B. Jestadi and L. Periyasamy, Indian J. Clin. Biochem., 30, 11 (2015);https://doi.org/10.1007/s12291-014-0446-0
- Z. Haida and M. Hakiman, Food Sci. Nutr., 7, 1555 (2019);https://doi.org/10.1002/fsn3.1012
- E.I. Stiefel, I. Bertini and H.B. Gray, Biological Inorganic Chemistry: Structure and Reactivity, University Science Books, California (2007).
- R.G. Hicks, Org. Biomol. Chem., 5, 1321 (2007); https://doi.org/10.1039/b617142g
- S. Lomnicki, H. Truong, E. Vejerano and B. Dellinger, Environ. Sci. Technol., 42, 4982 (2008); https://doi.org/10.1021/es071708h.
- M. Abe, Chem. Rev., 113, 7011 (2013); https://doi.org/10.1021/cr400056a.
- D.C. Nonhebel and J.C. Walton, Free-Radical Chemistry; Structure and Mechanism, Cambridge University Press (1974).
- D. Griller and K.U. Ingold, Acc. Chem. Res., 9, 13 (1976); https://doi.org/10.1021/ar50097a003
- E.M. Pliss, I.V. Tikhonov and A.I. Rusakov, Eds.: A. I. Kokorin, Nitroxides-Theory, Experiment and Applications, InTech, Rieka, pp. 263 (2012)
- H. Rath, S. Tokuji, N. Aratani, K. Furukawa, J.M. Lim, D. Kim, H. Shinokubo and A. Osuka, Angew. Chem. Int. Ed., 49, 1489 (2010); https://doi.org/10.1002/anie.200906017
- R.G. Hicks and K.U. Ingold, Eds.: R.G. Hicks, Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds, John Wiley & Sons Ltd (2010).
- K.H. Cheeseman and T.F. Slater, Br. Med. Bull., 49, 481 (1993); https://doi.org/10.1093/oxfordjournals.bmb.a072625
- R.V. Lloyd, P.M. Hanna and R.P. Mason, Free Radic. Biol. Med., 22, 885 (1997); https://doi.org/10.1016/S0891-5849(96)00432-7
- C. Schweitzer and R. Schmidt, Chem. Rev., 103, 1685 (2003); https://doi.org/10.1021/cr010371d
- H. Karoui, N. Hogg, C. Frejaville, P. Tordo and B. Kalyanaraman, J. Biol. Chem., 271, 6000 (1996); https://doi.org/10.1074/jbc.271.11.6000
- M.D.E. Forbes, Carbon-Centered Free Radicals and Radical Cations, Structure, Reactivity and Dynamics, John Wiley & Sons, Inc., Hoboken, New Jersey (2010).
- B. Halliwell, Encyclopedia of Life Sciences, Nature Publishing Group (2001).
- G.J. Blackwell and R.I. Flower, Br. Med. Bull., 39, 260 (1983); https://doi.org/10.1093/oxfordjournals.bmb.a071830
- M. Tsuruga and K. Shikama, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1337, 96 (1997); https://doi.org/10.1016/S0167-4838(96)00156-2
- F.S. Pala and K. Tabakçioglu, Adv. Mol. Biol., 1, 63 (2007).
- K.A. Kelly, C.M. Havrilla, T.C. Brady, K.H. Abramo and E.D. Levin, Environ. Health Perspect., 106, 375 (1998); https://doi.org/10.1289/ehp.98106375
- B.M. Babior, J. Clin. Invest., 73, 599 (1984); https://doi.org/10.1172/JCI111249
- K. Asada and K. Kiso, Eur. J. Biochem., 33, 253 (1973); https://doi.org/10.1111/j.1432-1033.1973.tb02677.x
- J.P. Kehrer, Toxicology, 149, 43 (2000); https://doi.org/10.1016/S0300-483X(00)00231-6
- B. Uttara, A.V. Singh, P. Zamboni and R.T. Mahajan, Curr. Neuropharmacol., 7, 65 (2009); https://doi.org/10.2174/157015909787602823
- R. Ferrari, C. Ceconi, S. Curello, A. Cargnoni, E. Pasini, F. De Giuli and A. Albertini, Am. J. Clin. Nutr., 53, 215s (1991); https://doi.org/10.1093/ajcn/53.1.215s
- L. Gianni, J.L. Zweier, A. Levy and C.E. Myers, J. Biol. Chem., 260, 6820 (1985);
- https://doi.org/10.1016/S0021-9258(18)88854-8
- M. Narwaley, K. Michail, P. Arvadia and A.G. Siraki, Chem. Res. Toxicol., 24, 1031 (2011); https://doi.org/10.1021/tx200016h
- C. Sonntag, Free radical induced DNA damage and its Repair: A Chemical Perspective, Springer (2006).
- D.F. Church and W.A. Pryor, Environ. Health Perspect., 64, 111 (1985); https://doi.org/10.1289/ehp.8564111
- C.J.A. Doelman, R. Leurs, W.C. Oosterom and A. Bast, Exp. Lung Res., 16, 41 (1990); https://doi.org/10.3109/01902149009064698
- J.R. Kanofsky and P. Sima, J. Biol. Chem., 266, 9039 (1991); https://doi.org/10.1016/S0021-9258(18)31548-5
- R. Atkinson, Atmos. Environ., 34, 2063 (2000); https://doi.org/10.1016/S1352-2310(99)00460-4
- W.B. DeMore, S.P. Sander, D.M. Golden, R.F. Hampson, M.J. Kurylo, C.J. Howard, A.R. Ravishankara, C.E. Kolb and M. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation No. 12, JPL Publ. (1997).
- R. Atkinson and J. Arey, Chem. Rev., 103, 4605 (2003); https://doi.org/10.1021/cr0206420
- C.S. Foote, J.S. Valentine, A. Greenberg and J.F. Liebman, Active Oxygen in Chemistry, Chapman and Hall: New York (1985).
- J.J. Steinberg, J.L. Gleeson and D. Gil, Arch. Environ. Health, 45, 80 (1990); https://doi.org/10.1080/00039896.1990.9935930
- K.B. Storey, Functional Metabolism: Regulation and Adaptation, Wiley-Liss, Inc. (2004).
- B. Halliwell and J.M.C. Gutteridge, FEBS Lett., 307, 108 (1992); https://doi.org/10.1016/0014-5793(92)80911-Y
- A. Kunwar and K.I. Priyadarsini, J. Med. Appl. Sci., 1, 53 (2011).
- J.S. Beckman and W.H. Koppenol, Am. J. Physiol. Cell Physiol., 271, C1424 (1996); https://doi.org/10.1152/ajpcell.1996.271.5.C1424
- E. Madej, L.K. Folkes, P. Wardman, G. Czapski and S. Goldstein, Free Radic. Biol. Med., 44, 2013 (2008); https://doi.org/10.1016/j.freeradbiomed.2008.02.015
- M. Valko, D. Leibfritz, J. Moncol, M.T.D. Cronin, M. Mazur and J. Telser, Int. J. Biochem. Cell Biol., 39, 44 (2007); https://doi.org/10.1016/j.biocel.2006.07.001
- F. Ursini, M. Maiorino and H.J. Forman, Redox Biol., 8, 205 (2016); https://doi.org/10.1016/j.redox.2016.01.010
- L.A. Pham-Huy, H. He and C. Pham-Huy, Int. J. Biomed. Sci., 4, 89 (2008).
- S. Noori, J. Clin. Cell. Immunol., 1, 413 (2012); https://doi.org/10.4172/scientificreports.413
- J. Bouayed and T. Bohn, Nutrition, Well-Being and Health, InTech (2012).
- C. Kerksick and D. Willoughby, J. Int. Soc. Sports Nutr., 2, 38 (2005); https://doi.org/10.1186/1550-2783-2-2-38
- A.C. Carr and B. Frei, Am. J. Clin. Nutr., 69, 1086 (1999); https://doi.org/10.1093/ajcn/69.6.1086
- H. Sies, Oxidative Stress, In: Oxidants and Antioxidants, Academic Press, New York (1991).
- E.W. Neuman, J. Chem. Phys., 2, 31 (1934); https://doi.org/10.1063/1.1749353
- A.W. Petrocelli and D.L. Kraus, J. Chem. Educ., 40, 146 (1963); https://doi.org/10.1021/ed040p146
- C.B. Jackson and R.C. Werner, Adv. Chem. Ser., 19, 169 (1957); https://doi.org/10.1021/ba-1957-0019.ch018
- M. Schmidt and H. Bipp, Z. Anorg. Allg. Chem., 303, 190 (1960); https://doi.org/10.1002/zaac.19603030312
- A. Le Berre and Y. C. R. Berber, Acad. Sci. Paris, 260, 4299 (1965).
- A. Le Berre and Y. Berguer, Bull. Soc. Chim. Fr., 85, 2363 (1966).
- B.H.J. Bielski and J.M. Gebicki, Adv. Radiat. Chem., 2, 177 (1970).
- G. Czapski, Annu. Rev. Phys. Chem., 22, 171 (1971); https://doi.org/10.1146/annurev.pc.22.100171.001131
- P.F. Knowles, J.F. Gibson, F.M. Pick and R.C. Bray, Biochem. J., 111, 53 (1969); https://doi.org/10.1042/bj1110053
- J.M. McCord and I. Fridovich, J. Biol. Chem., 244, 6049 (1969); https://doi.org/10.1016/S0021-9258(18)63504-5
- J.S. Valentine and D. Mota de Freitas, J. Chem. Educ., 62, 990 (1985); https://doi.org/10.1021/ed062p990
- C.S. St. Clair, H.B. Gray and J.S. Valentine, Inorg. Chem., 31, 925 (1992); https://doi.org/10.1021/ic00031a041
- J.A. Fee, Eds.: M.A.J. Rodgers and E.L. Powers, Oxygen and Oxy-Radicals in Chemistry and Biology, Academic Press: New York (1981).
- I. Fridovich, Adv. Inorg. Biochem., 1, 67 (1979).
- A. Bakac, J.H. Espenson, I.I. Creaser and A.M. Sargeson, J. Am. Chem. Soc., 105, 7624 (1983); https://doi.org/10.1021/ja00364a025
- W.H. Bannister and J.V. Bannister, Biological and Clinical Aspects of Superoxide and Superoxide Dismutase, Elsevier: Amsterdam (1980).
- R. Nilsson, F.M. Pick and R.C. Bray, Biochim. Biophys. Acta, 145, 145 (1969); https://doi.org/10.1016/0304-4165(69)90022-1
- I. Fridovich, Acc. Chem. Res., 5, 321 (1972); https://doi.org/10.1021/ar50058a001
- B.H.J. Bielski, Photochem. Photobiol., 28, 645 (1978); https://doi.org/10.1111/j.1751-1097.1978.tb06986.x
- B.H.J. Bielski, D.E. Cabelli, R.L. Arudi and A.B. Ross, J. Phys. Chem. Ref. Data, 14, 1041 (1985); https://doi.org/10.1063/1.555739
- P.J. Wardman, J. Phys. Chem. Ref. Data, 18, 1637 (1989); https://doi.org/10.1063/1.555843
- D.M. Stanbury, Adv. Inorg. Chem., 33, 69 (1989).
- L. Vaska, Acc. Chem. Res., 9, 175 (1976); https://doi.org/10.1021/ar50101a002
- L. Andrews, J. Am. Chem. Soc., 90, 7368 (1968); https://doi.org/10.1021/ja01028a048
- J.C. Evans, J. Chem. Soc. D, 682 (1969); https://doi.org/10.1039/c29690000682
- T. Ozawa, A. Hanaki and H. Yamamoto, FEBS Lett., 74, 99 (1977); https://doi.org/10.1016/0014-5793(77)80762-X
- P. Geroge, Eds,: T.E. King, H.S. Mason and M. Morrison, Oxidases and Related Redox Systems, Wiley: New York (1965).
- J.A. Fee and J.S. Valentine, Eds.: A.M. Michelson, J.M. Mecord and I. Fridovich, Superoxide and Superoxide Dismutase, Academic Press: New York (1977).
- M. Faraggi and C. Houee-Levin, J. Chim. Phys., 96, 71 (1999); https://doi.org/10.1051/jcp:1999113
- D. Solomon, P. Peretz and M. Faraggi, J. Phys. Chem., 86, 1842 (1982); https://doi.org/10.1021/j100207a021
- R. Dietz, A.E.J. Fomo, B.E. Larcombe and M.E. Peover, J. Chem. Soc. B, 816 (1970); https://doi.org/10.1039/J29700000816
- F. Magno, R. Seeber and S. Valcher, J. Electroanal. Chem., 83, 131 (1977); https://doi.org/10.1016/S0022-0728(77)80506-8
- R.A. Johnson and E.G. Nidy, J. Org. Chem., 40, 1680 (1975); https://doi.org/10.1021/jo00899a049
- D.T. Sawyer, D.T. Richens, E.J. Nanni Jr. and M.D. Stallings, Eds.: J.V. Bannister and H.A.O. Hill, Redox Reaction Chemistry of Superoxide Ion, In: Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutase: Developments in Biochemistry; Elsevier/North-Holland: New York, vol. 11A, pp 1-23 (1979).
- E.J. Nanni Jr., Ph.D. Dissertation, University of California, Riverside, CA, USA (1980).
- E.A. Mayeda and A.J. Bard, J. Am. Chem. Soc., 95, 6223 (1973); https://doi.org/10.1021/ja00800a012
- R.M. Sellers and M.G. Simic, J. Am. Chem. Soc., 98, 6145 (1976); https://doi.org/10.1021/ja00436a014
- D.T. Sawyer, M.J. Gibian, M.M. Morrison and E.T. Seo, J. Am. Chem. Soc., 100, 627 (1978); https://doi.org/10.1021/ja00470a046
- M. Tezuka, H. Hamada, Y. Ohkatsu and T. Osa, Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 44, 17 (1976); https://doi.org/10.5796/kogyobutsurikagaku.44.17
- Y.A. IIan, G. Czapanki and D. Meisel, Biochim. Biophys. Acta, 430, 209 (1976); https://doi.org/10.1016/0005-2728(76)90080-3
- D. Behar, G. Czapski, J. Rabani, L.M. Dorfman and H.A. Schwarz, J. Phys. Chem., 74, 3209 (1970); https://doi.org/10.1021/j100711a009
- G.W. Gokel, H.M. Gerdes and N.W. Rebert, Tetrahedron Lett., 17, 653 (1976); https://doi.org/10.1016/S0040-4039(00)74588-6
- J.A. Imlay and S. Linn, Science, 240, 1302 (1988); https://doi.org/10.1126/science.3287616
- E.R. Stadtman, Science, 257, 1220 (1992); https://doi.org/10.1126/science.1355616
- C.E. Thomas, L.A. Morehouse and S.D. Aust, J. Biol. Chem., 260, 3275 (1985); https://doi.org/10.1016/S0021-9258(19)83617-7
- B.M. Babior, R.S. Kipnes and J.T. Curnutte, J. Clin. Invest., 52, 741 (1973); https://doi.org/10.1172/JCI107236
- J.T. Curnutte and B.M. Babior, J. Clin. Invest., 53, 1662 (1974); https://doi.org/10.1172/JCI107717
- B.M. Babior, Braz. J. Med. Biol. Res., 30, 141 (1997); https://doi.org/10.1590/S0100-879X1997000200001
- R.B. Johnston Jr. and S.L. Newman, Pediatr. Clin. North Am., 24, 365 (1977); https://doi.org/10.1016/S0031-3955(16)33424-1
- S.J. Chanock, J. El Benna, R.M. Smith and B.M. Babior, J. Biol. Chem., 269, 24519 (1994); https://doi.org/10.1016/S0021-9258(17)31418-7
- C.C. Winterbourn, Arch. Biochem. Biophys., 209, 159 (1981); https://doi.org/10.1016/0003-9861(81)90268-X
- E. Cadenas, Annu. Rev. Biochem., 58, 79 (1989); https://doi.org/10.1146/annurev.bi.58.070189.000455
- D.R. Gough and T.G. Cotter, Cell Death and Disease, Macmillan Publishers Limited (2011).
- R.J. Campion, N. Purdie and N. Sutin, Inorg. Chem., 3, 1091 (1964); https://doi.org/10.1021/ic50018a006
- T.J. Meyer and H. Taube, Inorg. Chem., 7, 2369 (1968); https://doi.org/10.1021/ic50069a038
- M. Chou, C. Creutz and N. Sutin, J. Am. Chem. Soc., 99, 5615 (1977); https://doi.org/10.1021/ja00459a014
- W. Böttcher, G.M. Brown and N. Sutin, Inorg. Chem., 18, 1447 (1979); https://doi.org/10.1021/ic50196a008
- J.C. Brodovitch and A. McAuley, Inorg. Chem., 20, 1667 (1981); https://doi.org/10.1021/ic50220a009
- B. Goyal, S. Solanki, S. Arora, A. Prakash and R.N. Mehrotra, J. Chem. Soc., Dalton Trans., 3109 (1995); https://doi.org/10.1039/dt9950003109
- M. Martinez and M.A. Pitarque, J. Chem. Soc., Dalton Trans., 4107 (1995); https://doi.org/10.1039/dt9950004107
- D. Chatterjee, J. Chem. Soc., Dalton Trans., 4389 (1996); https://doi.org/10.1039/DT9960004389
- T.C. Lau, K.W.C. Lau and K. Lau, J. Chem. Soc., Dalton Trans., 3091 (1994); https://doi.org/10.1039/dt9940003091
- M. Martinez, M.A. Pitarque and R. van Eldik, J. Chem. Soc., Dalton Trans., 3159 (1994); https://doi.org/10.1039/dt9940003159
- D.H. Macartney and A. McAuley, Inorg. Chem., 22, 2062 (1983); https://doi.org/10.1021/ic00156a024
- K. Lemma, A.M. Sargeson and L.I. Elding, J. Chem. Soc., Dalton Trans., 1167 (2000); https://doi.org/10.1039/a909484i
- R.A. Marcus and N. Sutin, Biochim. Biophys. Acta Rev. Bioenerg., 811, 265 (1985); https://doi.org/10.1016/0304-4173(85)90014-X
- L. Pauling and E.B. Wilson, Introduction to Quantum Mechanics, McGraw Hill: New York (1935).
- M.A. Ratner and R.D. Levine, J. Am. Chem. Soc., 102, 4898 (1980); https://doi.org/10.1021/ja00535a010
- M.H. Ford-Smith and N. Sutin, J. Am. Chem. Soc., 83, 1830 (1961); https://doi.org/10.1021/ja01469a015
- G. Dulz and N. Sutin, Inorg. Chem., 2, 917 (1963); https://doi.org/10.1021/ic50009a010
- M. Smoluchowski, Z. Phys. Chem., 92U, 129 (1918); https://doi.org/10.1515/zpch-1918-9209
- R.A. Marcus, Rev. Mod. Phys., 65, 599 (1993); https://doi.org/10.1103/RevModPhys.65.599
- R.A. Marcus, Angew. Chem. Int. Ed. Engl., 32, 1111 (1993); https://doi.org/10.1002/anie.199311113
- A. Bakac, Physical Inorganic Chemistry: Reactions, Processes and Applications, John Wiley & Sons, Inc.: Hoboken, New Jersey (2010).
- S. Wherland, Coord. Chem. Rev., 123, 169 (1993); https://doi.org/10.1016/0010-8545(93)85055-9
- T.W. Swaddle, Chem. Rev., 105, 2573 (2005); https://doi.org/10.1021/cr030727g
- R.A. Marcus, J. Phys. Chem. B, 102, 10071 (1998); https://doi.org/10.1021/jp9834457
- J.M. Savéant, J. Am. Chem. Soc., 130, 4732 (2008); https://doi.org/10.1021/ja077480f
- D.M. Stanbury, O. Haas and H. Taube, Inorg. Chem., 19, 518 (1980); https://doi.org/10.1021/ic50204a048
- K. Zahir, J.H. Espenson and A. Bakac, J. Am. Chem. Soc., 110, 5059 (1988); https://doi.org/10.1021/ja00223a025
- R.B. Jordan, Reaction Mechanisms of Inorganic and Organometallic Systems, Oxford University Press: New York (1991).
- N. Sutin, Acc. Chem. Res., 15, 275 (1982); https://doi.org/10.1021/ar00081a002
- N. Sutin, Prog. Inorg. Chem., 30, 441 (1983).
- J.J. Zuckerman, Inorganic Reactions and Methods, VCH Publishers, Weinheim, Decrfield Beach, FL, vol. 15 (1986).
- N.S. Hush, Trans. Faraday Soc., 57, 557 (1961); https://doi.org/10.1039/tf9615700557
- N.R. Kestner, J. Logan and J. Jortner, J. Phys. Chem., 78, 2148 (1974); https://doi.org/10.1021/j100614a017
- C.T. Lin, W. Boettcher, M. Chou, C. Creutz and N. Sutin, J. Am. Chem. Soc., 98, 6536 (1976); https://doi.org/10.1021/ja00437a020
- J. Ulstrap, Charge Transfer Processes in Condensed Media, Springer: Verlag, Berlin (1979).
- D. Newton and N. Sutin, Annu. Rev. Phys. Chem., 35, 437 (1984); https://doi.org/10.1146/annurev.pc.35.100184.002253
- L.E. Bennett and H. Taube, Inorg. Chem., 7, 254 (1968); https://doi.org/10.1021/ic50060a017
- J.R. Pladziewicz and J.H. Espenson, J. Phys. Chem., 75, 3381 (1971); https://doi.org/10.1021/j100690a034
- Y. Tendler and M. Faraggi, J. Chem. Phys., 57, 1358 (1972); https://doi.org/10.1063/1.1678404
- R.J. Christensen, J.H. Espenson and A.B. Butcher, Inorg. Chem., 12, 564 (1973); https://doi.org/10.1021/ic50121a014
- H.E. Toma and J.M. Malin, J. Am. Chem. Soc., 97, 288 (1975); https://doi.org/10.1021/ja00835a010
- D.E. Pennington and A.E. Martell, Coordination Chemistry, ed. ACS Monograph 174, ACS: Washington D.C., vol. 2 (1978).
- C.A. Koval and D.W. Margerum, Inorg. Chem., 20, 2311 (1981); https://doi.org/10.1021/ic50221a074
- D.H. Macartney and N. Sutin, Inorg. Chem., 24, 3403 (1985); https://doi.org/10.1021/ic00215a022
- J.W. Herbert and D.H. Macartney, Inorg. Chem., 24, 4398 (1985); https://doi.org/10.1021/ic00219a040
- M.N. Doyle, K. Libson, M. Woods, J.C. Sullivan and E. Deutsch, Inorg. Chem., 25, 3367 (1986); https://doi.org/10.1021/ic00239a011
- J.R. Pladziewicz, A.J. Abrahamson, R.A. Davis and M.D. Likar, Inorg. Chem., 26, 2058 (1987); https://doi.org/10.1021/ic00260a010
- H. Doine and T.W. Swaddle, Inorg. Chem., 27, 665 (1988); https://doi.org/10.1021/ic00277a019
- K. Libson, M. Woods, J.C. Sullivan, J.W. Watkins II, R.C. Elder and E. Deutsch, Inorg. Chem., 27, 999 (1988); https://doi.org/10.1021/ic00279a013
- J.M.A. Hoddenbagh and D.H. Macartney, Inorg. Chem., 29, 245 (1990);https://doi.org/10.1021/ic00327a019
- M.S. Ram and A. Haim, Inorg. Chem., 30, 1319 (1991); https://doi.org/10.1021/ic00006a029
- R. Sarala, S.B. Rabin and D.M. Stanbury, Inorg. Chem., 30, 3999 (1991); https://doi.org/10.1021/ic00021a007
- S.A. Kazmi, A.L. Shorter and J.V. McArdle, Inorg. Chem., 23, 4332 (1984); https://doi.org/10.1021/ic00193a045
- T.W. Newton, J. Chem. Educ., 45, 571 (1968); https://doi.org/10.1021/ed045p571
- W.L. Reynolds and R.W. Lumry, Mechanisms of Electron Transfer, Ronald Press: New York (1966).
- P.W. Atkins and M.C.R. Symons, The Structure of Inorganic Radicals, Elsevier: New York (1967).
- A.F. Wells, Structural Inorganic Chemistry, Clarendon Press: Oxford, Edn. 4 (1975).
- M.C.R. Symons, J. Chem. Soc., Dalton Trans., 1468 (1979); https://doi.org/10.1039/dt9790001468
- W.K. Wilmarth, D.M. Stanbury, J.E. Byrd, H.N. Po and C. Chua, Coord. Chem. Rev., 51, 155 (1983); https://doi.org/10.1016/0010-8545(83)85010-3
- R. Sarala, M.S. Islam, S.B. Rabin and D.M. Stanbury, Inorg. Chem., 29, 1133 (1990);https://doi.org/10.1021/ic00331a006
- R.B. Jordon, Reaction Mechanism of Inorgani and Organometallic Systems, Oxford University Press (1991).
- D.L. Ball and E.L. King, J. Am. Chem. Soc., 80, 1091 (1958); https://doi.org/10.1021/ja01538a019
- H. Taube, H. Myers and R.L. Rich, J. Am. Chem. Soc., 75, 4118 (1953); https://doi.org/10.1021/ja01112a546
- H. Taube, Adv. Inorg. Chem., 1, 1 (1959); https://doi.org/10.1016/S0065-2792(08)60251-4
- P. George, J.S. Griffith. P.D. Boyer, H. Lardy and K. Myrbäck, The Enzymes, Academic Press, New York, vol. 1, p. 347 (1959).
- R.G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes, Weinheim: New York (1991).
- F.A. Cotton and G. Wilkinson, Advance Inorganic Chemistry, A Comprehensive Text, Wiley Eastern Limited,:New Delhi, Edn. 3 (1990).
- A. Adin and A.G. Sykes, J. Chem. Soc. A, 354 (1968);https://doi.org/10.1039/J19680000354
- A. Haim and N. Sutin, J. Am. Chem. Soc., 87, 4210 (1965); https://doi.org/10.1021/ja01096a051
- J. Halpern and S. Nakamura, J. Am. Chem. Soc., 87, 3002 (1965); https://doi.org/10.1021/ja01091a036
- R. Snellgrove and E.L. King, J. Am. Chem. Soc., 84, 4609 (1962); https://doi.org/10.1021/ja00882a060
- R. Snellgrove and E.L. King, Inorg. Chem., 3, 288 (1964); https://doi.org/10.1021/ic50012a038
- D.P. Fay and N. Sutin, Inorg. Chem., 9, 1291 (1970); https://doi.org/10.1021/ic50087a064
- K. Wieghardt and A.G. Sykes, J. Chem. Soc., Dalton Trans., 651 (1974); https://doi.org/10.1039/DT9740000651
- J. Halpern and L.E. Orgel, Discuss. Faraday Soc., 29, 7 (1960);https://doi.org/10.1039/DF9602900007
- H. Taube and R.G. Gaunder, Inorg. Chem., 9, 2627 (1970); https://doi.org/10.1021/ic50094a001
- F.R. Nordmeyer and C. Norris, J. Am. Chem. Soc., 93, 4044 (1971); https://doi.org/10.1021/ja00745a037
- E.S. Gould and J.R. Barber Jr, J. Am. Chem. Soc., 93, 4045 (1971); https://doi.org/10.1021/ja00745a038
- E.S. Gould, J. Am. Chem. Soc., 94, 4360 (1972); https://doi.org/10.1021/ja00767a064
- M.Z. Hoffman and M. Simic, J. Am. Chem. Soc., 94, 1757 (1972); https://doi.org/10.1021/ja00760a063
- A. Haim, Acc. Chem. Res., 8, 264 (1975); https://doi.org/10.1021/ar50092a002
- E.S. Gould, J. Am. Chem. Soc., 96, 2373 (1974); https://doi.org/10.1021/ja00815a011
- R.J. Campion, T.J. Conocchioli and N. Sutin, J. Am. Chem. Soc., 86, 4591 (1964); https://doi.org/10.1021/ja01075a015
- R.G. Linck, Eds.: M.L. Tobe, MTP International Review of Science, Inorganic Chemistry, Series one, Butterworth: London (1972).
- W.S. Melvin and A. Haim, Inorg. Chem., 16, 2016 (1977); https://doi.org/10.1021/ic50174a038
- R.A. Marusak, P. Osvath, M. Kemper and A.G. Lappin, Inorg. Chem., 28, 1542 (1989); https://doi.org/10.1021/ic00307a024
- R.C. Patel, R.E. Ball, J.F. Endicott and R.G. Hughes, Inorg. Chem., 9, 23 (1970); https://doi.org/10.1021/ic50083a005
- U. El-Ayaan, R. F. Jameson and W. Linert, J. Chem. Soc., Dalton Trans., 1315 (1998); https://doi.org/10.1039/a708639c
- M. Ardon and R.A. Plane, J. Am. Chem. Soc., 81, 3197 (1959); https://doi.org/10.1021/ja01522a008
- J. Halpern, Q. Rev. Chem. Soc., 15, 207 (1961); https://doi.org/10.1039/qr9611500207
- J.H. Espenson, Acc. Chem. Res., 3, 347 (1970); https://doi.org/10.1021/ar50034a004
- J.K. Beattie and G.P. Haight Jr., Prog. Inorg. Chem., 17, 93 (1972).
- R.G. Linck, Eds.: M.L. Tobe, MTP International Review of Science, Inorganic Chemistry, Series two, Butterworth: London, vol. 9, p. 173 (1974).
- F. Basolo and R.G. Pearson, Mechanisms of Inorganic Reactions, Wiley Eastern Limited: New Delhi, Edn. 2, Chap. 6 (1977).
- H. Taube and E.L. King, J. Am. Chem. Soc., 76, 4053 (1954); https://doi.org/10.1021/ja01644a077
- H.A. Schwarz, D. Comstock, J.K. Yandell and R.W. Dodson, J. Phys. Chem., 78, 488 (1974); https://doi.org/10.1021/j100598a005
- R.G. Linck, Eds.: I.M. Kolthoff and P.J. Elving, Treatise on Analytical Chemistry, Part 1, Wiley: New York (1979).
- F.L. Harris and D.L. Toppen, Inorg. Chem., 17, 74 (1978); https://doi.org/10.1021/ic50179a016
- J.M. Mayer and I.J. Rhile, Biochim. Biophys. Acta, 1655, 51 (2004); https://doi.org/10.1016/j.bbabio.2003.07.002
- K. Chen, J. Hirst, R. Camba, C.A. Bonagura, C.D. Stout, B.K. Burgess and F.A. Armstrong, Nature, 405, 814 (2000); https://doi.org/10.1038/35015610
- M.V. Huynh and T.J. Meyer, Chem. Rev., 107, 5004 (2007); https://doi.org/10.1021/cr0500030
- J. Hudis and R.W. Dodson, J. Am. Chem. Soc., 78, 911 (1956); https://doi.org/10.1021/ja01586a011
- N. Grover and H.H. Thorp, J. Am. Chem. Soc., 113, 7030 (1991); https://doi.org/10.1021/ja00018a048
- W. Lui and H.H. Thorp, Transition Met. Coord. Chem., 1, 187 (1996).
- R.I. Cukier, J. Phys. Chem., 98, 2377 (1994); https://doi.org/10.1021/j100060a027
- J.Y. Fang and S. Hammes-Schiffer, J. Chem. Phys., 106, 8442 (1997); https://doi.org/10.1063/1.473903
- R.I. Cukier and D.G. Nocera, Annu. Rev. Phys. Chem., 49, 337 (1998); https://doi.org/10.1146/annurev.physchem.49.1.337
- C.W. Hoganson and G.T. Babcock, Science, 277, 1953 (1997); https://doi.org/10.1126/science.277.5334.1953
- C. Costentin, D.H. Evans, M. Robert, J.-M. Savéant and P.S. Singh, J. Am. Chem. Soc., 127, 12490 (2005); https://doi.org/10.1021/ja053911n
- S. Hammes-Schiffer, Acc. Chem. Res., 34, 273 (2001); https://doi.org/10.1021/ar9901117
- J.M. Mayer, Annu. Rev. Phys. Chem., 55, 363 (2004); https://doi.org/10.1146/annurev.physchem.55.091602.094446
- F. Himo and P.E.M. Siegbahn, Chem. Rev., 103, 2421 (2003); https://doi.org/10.1021/cr020436s
- J.S. Wright, E.R. Johnson and G.A. Di Labio, J. Am. Chem. Soc., 123, 1173 (2001); https://doi.org/10.1021/ja002455u
- M. Leopoldini, T. Marino, N. Russo and M. Toscano, J. Phys. Chem. A, 108, 4916 (2004); https://doi.org/10.1021/jp037247d
- P. Alov, I. Tsakovska and I. Pajeva, Curr. Top. Med. Chem., 15, 85 (2015); https://doi.org/10.2174/1568026615666141209143702
- G. Litwinienko and K.U. Ingold, Acc. Chem. Res., 40, 222 (2007); https://doi.org/10.1021/ar0682029
- R.D. Cannon, Electron Transfer Reactions, Butterworths (1980).
- B. Ahrens, M.G. Davidson, V.T. Forsyth, M.F. Mahon, A.L. Johnson, S.A. Mason, R.D. Price and P.R. Raithby, J. Am. Chem. Soc., 123, 9164 (2001); https://doi.org/10.1021/ja015849+
- G. Litwinienko and K.U. Ingold, J. Org. Chem., 69, 5888 (2004); https://doi.org/10.1021/jo049254j
- J. Stubbe and W. van der Donk, Chem. Rev., 98, 705 (1998); https://doi.org/10.1021/cr9400875
- C. Aubert, M.H. Vos, P. Mathis, A.P.M. Eker and K. Brettel, Nature, 405, 586 (2000); https://doi.org/10.1038/35014644
- G.T. Babcock, Proc. Natl. Acad. Sci. USA, 96, 12971 (1999); https://doi.org/10.1073/pnas.96.23.12971
- J. Stubbe, D.G. Nocera, C.S. Yee and M.C.Y. Chang, Chem. Rev., 103, 2167 (2003); https://doi.org/10.1021/cr020421u
- G.L. Closs and J.R. Miller, Science, 240, 440 (1988); https://doi.org/10.1126/science.240.4851.440
- A. Magnuson, H. Berglund, P. Korall, L. Hammarström, B. Åkermark, S. Styring and L. Sun, J. Am. Chem. Soc., 119, 10720 (1997); https://doi.org/10.1021/ja972161h
- M. Sjödin, S. Styring, B. Åkermark, L. Sun and L. Hammarström, J. Am. Chem. Soc., 122, 3932 (2000); https://doi.org/10.1021/ja993044k
- A. Masarwa and D. Meyerstein, Adv. Inorg. Chem., 55, 271 (2004).
- K.L. Rollick and J.K. Kochi, J. Am. Chem. Soc., 104, 1319 (1982); https://doi.org/10.1021/ja00369a030
- R.A. Marcus, J. Chem. Phys., 24, 966 (1956); https://doi.org/10.1063/1.1742723
- N. Sutin, J. Phys. Chem., 90, 3465 (1986); https://doi.org/10.1021/j100407a002
- W. Fujita and K. Awaga, J. Am. Chem. Soc., 123, 3601 (2001); https://doi.org/10.1021/ja002873z
- C.G. Pierpont and C.W. Lange, Prog. Inorg. Chem., 41, 331 (1994).
- J.M. Manriquez, G.T. Yee, R.S. McLean, A.J. Epstein and J.S. Miller, Science, 252, 1415 (1991); https://doi.org/10.1126/science.252.5011.1415
- H. Zhao Jr., M.J. Bazile Jr., J.R. Gal’an-Mascaros and K.R. Dunbar, Angew. Chem. Int. Ed., 42, 1015 (2003); https://doi.org/10.1002/anie.200390259
- J.B. Gilroy, S.D.J. McKinnon, B.D. Koivisto and R.G. Hicks, Org. Lett., 9, 4837 (2007); https://doi.org/10.1021/ol702163a
- W. Lu, Y. Zhang, J. Dai, Q.Y. Zhu, G.Q. Bian and D.Q. Zhang, Eur. J. Inorg. Chem., 2006, 1629 (2006); https://doi.org/10.1002/ejic.200500945
- M. Gandelman, B. Rybtchinski, N. Ashkenazi, R.M. Gauvin and D. Milstein, J. Am. Chem. Soc., 123, 5372 (2001); https://doi.org/10.1021/ja0157393
- A.E.J. deNooy, A.C. Besemer and H. vanBekkum, Synthesis, 1153 (1996); https://doi.org/10.1055/s-1996-4369
- R.A. Sheldon and I. Arends, J. Mol. Catal. Chem., 251, 200 (2006); https://doi.org/10.1016/j.molcata.2006.02.016
- P. Chaudhuri and K. Wieghardt, Prog. Inorg. Chem., 50, 151 (2001).
- C.K. Jørgensen, Oxidation Numbers and Oxidation States, Spinger: Berlin (1969).
- B. de Bruin, D.G.H. Hetterscheid, A.J.J. Koekoek and H. Grützmacher, Prog. Inorg. Chem., 55, 247 (2007).
- N.G. Connelly, R.L. Kelly, M.D. Kitchen, R.M. Mills, R.F.D. Stansfield, M.W. Whiteley, S.M. Whiting and P. Woodward, J. Chem. Soc., Dalton Trans., 1317 (1981); https://doi.org/10.1039/DT9810001317
- N.G. Connelly, P.G. Graham and J.B. Sheridan, J. Chem. Soc., Dalton Trans., 1619 (1986); https://doi.org/10.1039/DT9860001619
- R.P. Aggarwal, N.G. Connelly, B.J. Dunne, M. Gilbert and A.G. Orpen, J. Chem. Soc., Dalton Trans., 1 (1991); https://doi.org/10.1039/DT9910000001
- L. Brammer, N.G. Connelly, J. Edwin, W.E. Geiger, A.G. Orpen and J.B. Sheridan, Organometallics, 7, 1259 (1988); https://doi.org/10.1021/om00096a004
- T.F. Block, R.F. Fenske and C.P. Casey, J. Am. Chem. Soc., 98, 441 (1976); https://doi.org/10.1021/ja00418a019
- P.J. Krusic, U. Klabunde, C.P. Casey and T.F. Block, J. Am. Chem. Soc., 98, 2015 (1976); https://doi.org/10.1021/ja00423a086
- B. Meunier, S.P. de Visser and S. Shaik, Chem. Rev., 104, 3947 (2004); https://doi.org/10.1021/cr020443g
- R. Liu, K. Morokuma, A.M. Mebel and M.C. Lin, J. Phys. Chem., 100, 9314 (1996); https://doi.org/10.1021/jp953566w
- K. Rachlewicz and L. Latos-Grazynski, Inorg. Chem., 35, 1136 (1996); https://doi.org/10.1021/ic950876k
- M.W. Renner and J. Fajer, J. Biol. Inorg. Chem., 6, 823 (2001); https://doi.org/10.1007/s007750100276
- J.I. van der Vlugt, Eur. J. Inorg. Chem., 2012, 363 (2012); https://doi.org/10.1002/ejic.201100752
- V. Lyaskovskyy and B. de Bruin, ACS Catal., 2, 270 (2012); https://doi.org/10.1021/cs200660v
- W. Kaim and B. Schwederski, Coord. Chem. Rev., 254, 1580 (2010); https://doi.org/10.1016/j.ccr.2010.01.009
- M.A. Bigi, S.A. Reed and M.C. White, Nat. Chem., 3, 216 (2011); https://doi.org/10.1038/nchem.967
- A. Caneschi, D. Gatteschi, R. Sessoli and P. Rey, Acc. Chem. Res., 22, 392 (1989); https://doi.org/10.1021/ar00167a004
- H. Zimmer, D.C. Lankin and S.W. Horgan, Chem. Rev., 71, 229 (1971); https://doi.org/10.1021/cr60270a005
- F.A. Chavez and P.K. Mascharak, Acc. Chem. Res., 33, 539 (2000); https://doi.org/10.1021/ar990089h
- L.I. Simandi, Catalytic Activation of Dioxygen by Metal Complexes, Kluwer Academic Publishers (1992).
- A. Samuni and G. Czapski, J. Phys. Chem., 74, 4592 (1970); https://doi.org/10.1021/j100720a024
- H. Mimoun, L. Saussine, E. Daire, M. Postel, J. Fischer and R. Weiss, J. Am. Chem. Soc., 105, 3101 (1983); https://doi.org/10.1021/ja00348a025
- B. Meunier, Biomimetic Oxidations Catalyzed by Transition Metal Complexes, Imperial College Press: London (2000).
- A.E. Shilov and G.B. Shulpin, Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes, Kluwer (2000).
- I.B. Afanasiev, Usp. Khim., 48, 977 (1979).
- A. Bakac, Coord. Chem. Rev., 250, 2046 (2006); https://doi.org/10.1016/j.ccr.2006.02.001
- M.F. Perutz, Nature, 228, 726 (1970); https://doi.org/10.1038/228726a0
- C.G. Barraclough, G.A. Lawrance and P.A. Lay, Inorg. Chem., 17, 3317 (1978); https://doi.org/10.1021/ic50190a001
- T. Shibahara, J. Chem. Soc. Chem. Commun., 864 (1973); https://doi.org/10.1039/C39730000864
- A. Hoffman and H. Taube, Inorg. Chem., 7, 1971 (1968); https://doi.org/10.1021/ic50068a003
- K.M. Davies and A.G. Sykes, J. Chem. Soc. A, 1418 (1971); https://doi.org/10.1039/j19710001418
- M.R. Hyde and A.G. Sykes, J. Chem. Soc., Dalton Trans., 1550 (1974); https://doi.org/10.1039/DT9740001550
- R. Davies and A.G. Sykes, J. Chem. Soc. A, 2831 (1968); https://doi.org/10.1039/j19680002831
- Y. Sasaki, Bull. Chem. Soc. Jpn., 50, 1939 (1977); https://doi.org/10.1246/bcsj.50.1939
- E.P. Talsi, V.P. Babenko, V.M. Nekipelov and A.A. Shubin, React. Kinet. Catal. Lett., 31, 209 (1986); https://doi.org/10.1007/BF02062534
- S.K. Ghosh, S.K. Saha, M.C. Ghosh, R.N. Bose, J.W. Reed and E.S. Gould, Inorg. Chem., 31, 3358 (1992); https://doi.org/10.1021/ic00042a007
- D.L. Duffy, D.A. House and J.A. Weil, J. Inorg. Nucl. Chem., 31, 2053 (1969); https://doi.org/10.1016/0022-1902(69)90020-7
- R.E. Marsh and W.P. Schaefer, Acta Crystallogr. B, 24, 246 (1968); https://doi.org/10.1107/S0567740868002037
- A.A. Vlèek, Collect. Czech. Chem. Commun., 25, 3036 (1960); https://doi.org/10.1135/cccc19603036
- W.P. Schaefer, Inorg. Chem., 7, 725 (1968); https://doi.org/10.1021/ic50062a022
- L. Pauling, The Nature of the Chemical Bond, Cornell University Press: New York (1960).
- G.G. Christoph, R.E. Marsh and W.P. Schaefer, Inorg. Chem., 8, 291 (1969); https://doi.org/10.1021/ic50072a022
- J.A. Weil and J.K. Kinnaird, J. Phys. Chem., 71, 3341 (1967); https://doi.org/10.1021/j100869a036
- V.I. Belova and Y.R. Syrkin, Neorg. Khim. Akad. Nauk SSSR, 30, 109 (1955).
- I. Bernal, E.A.V. Ebsworth and J.A. Weil, Proc. Chem. Soc., 57 (1959).
- B.M. Hoffman, D.L. Diemente and F. Basolo, J. Am. Chem. Soc., 92, 61 (1970); https://doi.org/10.1021/ja00704a010
- S. Barnartt and R.G. Charles, J. Electrochem. Soc., 109, 333 (1962); https://doi.org/10.1149/1.2425411
- J.E. Barnes, J.B. Barrett, R.W. Brett and J. Brown, J. Inorg. Nucl. Chem., 30, 2207 (1968); https://doi.org/10.1016/0022-1902(68)80218-0
- A. Haim and W.K. Wilmarth, J. Am. Chem. Soc., 83, 509 (1961); https://doi.org/10.1021/ja01464a001.
- A.A. Gabovich and I.M. Reibel, Tr. Kishinevsk. Sel’khoz. lnst., 9, 185 (1956).
- A.A. Gabovich and I.M. Reibel, Tr. Kishinevsk. Sel’khoz. lnst., 43, 61 (1966).
- L.R. Thompson and W.K. Wilmarth, J. Phys. Chem., 56, 5 (1952); https://doi.org/10.1021/j150493a002
- A.G. Sykes, Trans. Faraday Soc., 59, 1334 (1963); https://doi.org/10.1039/TF9635901334
- K. Glau and K. Rehm, Z. Anorg. Allg. Chem., 237, 79 (1938); https://doi.org/10.1002/zaac.19382370107
- A.G. Sykes and J.A. Weil, Prog. Inorg. Chem., 1, 13 (1970).
References
A.L. Lavoisier, Traité élémentaire de chimie, Cuchet, Paris 1789, vol. 1, English Translation by R. Kerr, reprinted by Dover Press: New York (1965).
M. Gomberg, J. Am. Chem. Soc., 23, 109 (1901); https://doi.org/10.1021/ja02028a005
B. Halliwell and J.M.C. Gutteridge, Free Radicals in Biology and Medicine, Clarendon Press: Oxford, Edn. 2 (1999).
A. Ito, Y. Nakano, M. Urabe, T. Kato and K. Tanaka, J. Am. Chem. Soc., 128, 2948 (2006); https://doi.org/10.1021/ja056318e
G. Nagendrappa, Resonance, 10, 72 (2005); https://doi.org/10.1007/BF02835925
L. Wojnarovits, J. Chem. Educ., 88, 1658 (2011); https://doi.org/10.1021/ed1011053
K. Bagchi and S. Puri, East. Mediterr. Health J., 4, 350 (1998); https://doi.org/10.26719/1998.4.2.350
D.H. Hey and W.A. Waters, Chem. Rev., 21, 169 (1937); https://doi.org/10.1021/cr60068a006
J.L. Redpath, J. Chem. Educ., 58, 131 (1981); https://doi.org/10.1021/ed058p131
S. Fukuzumi, K. Ohkubo and Y. Morimoto, Phys. Chem. Chem. Phys., 14, 8472 (2012); https://doi.org/10.1039/c2cp40459a
M. Gomberg, J. Chem. Educ., 9, 439 (1932); https://doi.org/10.1021/ed009p439
P.O.P. Ts’o, J.C. Barret, W.J. Csspary, S.A. Lesko, R.J. Lorentzen and L.M. Sehechtman, Eds.: K.C. Smith, Aging, Carcinogenesis and Radiation Biology, Plenum Press: New York and London (1976).
S. Licht, G.J. Gerfen and J. Stubbe, Science, 271, 477 (1996); https://doi.org/10.1126/science.271.5248.477
R. Banerjee, Chem. Rev., 103, 2083 (2003); https://doi.org/10.1021/cr0204395
J. Knappe and A.F. Volker Wagner, Adv. Protein Chem., 58, 277 (2001); https://doi.org/10.1016/S0065-3233(01)58007-9
P. Dorlet, S.A. Seibold, G.T. Babcock, G.J. Gerfen, W.L. Smith, A.L. Tsai and S. Un, Biochemistry, 41, 6107 (2002); https://doi.org/10.1021/bi015871f
J. Cheek and J.B. Broderick, J. Am. Chem. Soc., 124, 2860 (2002); https://doi.org/10.1021/ja017784g
O.T. Magnusson and P.A. Frey, Biochemistry, 41, 1695 (2002); https://doi.org/10.1021/bi011947w
J.W. Whittaker, Chem. Rev., 103, 2347 (2003); https://doi.org/10.1021/cr020425z
R.M.J. Palmer, D.S. Ashton and S. Moncada, Nature, 333, 664 (1988); https://doi.org/10.1038/333664a0
R.S. Sohal and R. Weindruch, Science, 128, 379 (1996); https://doi.org/10.1126/science.273.5271.59
Y.Z. Fang and R.L. Zheng, Theory and Application of Free Radical Biology, Beijing Scientific Press, pp. 647 (2002).
Y.Z. Fang, Free Radicals and Nutrition, In: Theory and Application of Free Radical Biology, Beijing Scientific Press (2002).
D.L. Gilbert and N.Y. Ann, Ann. N. Y. Acad. Sci., 899, 1 (2000); https://doi.org/10.1111/j.1749-6632.2000.tb06172.x
Y.Z. Fang, C.P. Sun, X.H. Tian and J.-H. Cong, Am. J. Chin. Med., 26, 153 (1998); https://doi.org/10.1142/S0192415X98000208
G. Wu and C.J. Meininger, Annu. Rev. Nutr., 22, 61 (2002); https://doi.org/10.1146/annurev.nutr.22.110901.145329
M.J. Jackson, Proc. Nutr. Soc., 58, 1001 (1999); https://doi.org/10.1017/S0029665199001317
A. Phaniendra, D.B. Jestadi and L. Periyasamy, Indian J. Clin. Biochem., 30, 11 (2015);https://doi.org/10.1007/s12291-014-0446-0
Z. Haida and M. Hakiman, Food Sci. Nutr., 7, 1555 (2019);https://doi.org/10.1002/fsn3.1012
E.I. Stiefel, I. Bertini and H.B. Gray, Biological Inorganic Chemistry: Structure and Reactivity, University Science Books, California (2007).
R.G. Hicks, Org. Biomol. Chem., 5, 1321 (2007); https://doi.org/10.1039/b617142g
S. Lomnicki, H. Truong, E. Vejerano and B. Dellinger, Environ. Sci. Technol., 42, 4982 (2008); https://doi.org/10.1021/es071708h.
M. Abe, Chem. Rev., 113, 7011 (2013); https://doi.org/10.1021/cr400056a.
D.C. Nonhebel and J.C. Walton, Free-Radical Chemistry; Structure and Mechanism, Cambridge University Press (1974).
D. Griller and K.U. Ingold, Acc. Chem. Res., 9, 13 (1976); https://doi.org/10.1021/ar50097a003
E.M. Pliss, I.V. Tikhonov and A.I. Rusakov, Eds.: A. I. Kokorin, Nitroxides-Theory, Experiment and Applications, InTech, Rieka, pp. 263 (2012)
H. Rath, S. Tokuji, N. Aratani, K. Furukawa, J.M. Lim, D. Kim, H. Shinokubo and A. Osuka, Angew. Chem. Int. Ed., 49, 1489 (2010); https://doi.org/10.1002/anie.200906017
R.G. Hicks and K.U. Ingold, Eds.: R.G. Hicks, Stable Radicals: Fundamentals and Applied Aspects of Odd-Electron Compounds, John Wiley & Sons Ltd (2010).
K.H. Cheeseman and T.F. Slater, Br. Med. Bull., 49, 481 (1993); https://doi.org/10.1093/oxfordjournals.bmb.a072625
R.V. Lloyd, P.M. Hanna and R.P. Mason, Free Radic. Biol. Med., 22, 885 (1997); https://doi.org/10.1016/S0891-5849(96)00432-7
C. Schweitzer and R. Schmidt, Chem. Rev., 103, 1685 (2003); https://doi.org/10.1021/cr010371d
H. Karoui, N. Hogg, C. Frejaville, P. Tordo and B. Kalyanaraman, J. Biol. Chem., 271, 6000 (1996); https://doi.org/10.1074/jbc.271.11.6000
M.D.E. Forbes, Carbon-Centered Free Radicals and Radical Cations, Structure, Reactivity and Dynamics, John Wiley & Sons, Inc., Hoboken, New Jersey (2010).
B. Halliwell, Encyclopedia of Life Sciences, Nature Publishing Group (2001).
G.J. Blackwell and R.I. Flower, Br. Med. Bull., 39, 260 (1983); https://doi.org/10.1093/oxfordjournals.bmb.a071830
M. Tsuruga and K. Shikama, Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 1337, 96 (1997); https://doi.org/10.1016/S0167-4838(96)00156-2
F.S. Pala and K. Tabakçioglu, Adv. Mol. Biol., 1, 63 (2007).
K.A. Kelly, C.M. Havrilla, T.C. Brady, K.H. Abramo and E.D. Levin, Environ. Health Perspect., 106, 375 (1998); https://doi.org/10.1289/ehp.98106375
B.M. Babior, J. Clin. Invest., 73, 599 (1984); https://doi.org/10.1172/JCI111249
K. Asada and K. Kiso, Eur. J. Biochem., 33, 253 (1973); https://doi.org/10.1111/j.1432-1033.1973.tb02677.x
J.P. Kehrer, Toxicology, 149, 43 (2000); https://doi.org/10.1016/S0300-483X(00)00231-6
B. Uttara, A.V. Singh, P. Zamboni and R.T. Mahajan, Curr. Neuropharmacol., 7, 65 (2009); https://doi.org/10.2174/157015909787602823
R. Ferrari, C. Ceconi, S. Curello, A. Cargnoni, E. Pasini, F. De Giuli and A. Albertini, Am. J. Clin. Nutr., 53, 215s (1991); https://doi.org/10.1093/ajcn/53.1.215s
L. Gianni, J.L. Zweier, A. Levy and C.E. Myers, J. Biol. Chem., 260, 6820 (1985);
https://doi.org/10.1016/S0021-9258(18)88854-8
M. Narwaley, K. Michail, P. Arvadia and A.G. Siraki, Chem. Res. Toxicol., 24, 1031 (2011); https://doi.org/10.1021/tx200016h
C. Sonntag, Free radical induced DNA damage and its Repair: A Chemical Perspective, Springer (2006).
D.F. Church and W.A. Pryor, Environ. Health Perspect., 64, 111 (1985); https://doi.org/10.1289/ehp.8564111
C.J.A. Doelman, R. Leurs, W.C. Oosterom and A. Bast, Exp. Lung Res., 16, 41 (1990); https://doi.org/10.3109/01902149009064698
J.R. Kanofsky and P. Sima, J. Biol. Chem., 266, 9039 (1991); https://doi.org/10.1016/S0021-9258(18)31548-5
R. Atkinson, Atmos. Environ., 34, 2063 (2000); https://doi.org/10.1016/S1352-2310(99)00460-4
W.B. DeMore, S.P. Sander, D.M. Golden, R.F. Hampson, M.J. Kurylo, C.J. Howard, A.R. Ravishankara, C.E. Kolb and M. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation No. 12, JPL Publ. (1997).
R. Atkinson and J. Arey, Chem. Rev., 103, 4605 (2003); https://doi.org/10.1021/cr0206420
C.S. Foote, J.S. Valentine, A. Greenberg and J.F. Liebman, Active Oxygen in Chemistry, Chapman and Hall: New York (1985).
J.J. Steinberg, J.L. Gleeson and D. Gil, Arch. Environ. Health, 45, 80 (1990); https://doi.org/10.1080/00039896.1990.9935930
K.B. Storey, Functional Metabolism: Regulation and Adaptation, Wiley-Liss, Inc. (2004).
B. Halliwell and J.M.C. Gutteridge, FEBS Lett., 307, 108 (1992); https://doi.org/10.1016/0014-5793(92)80911-Y
A. Kunwar and K.I. Priyadarsini, J. Med. Appl. Sci., 1, 53 (2011).
J.S. Beckman and W.H. Koppenol, Am. J. Physiol. Cell Physiol., 271, C1424 (1996); https://doi.org/10.1152/ajpcell.1996.271.5.C1424
E. Madej, L.K. Folkes, P. Wardman, G. Czapski and S. Goldstein, Free Radic. Biol. Med., 44, 2013 (2008); https://doi.org/10.1016/j.freeradbiomed.2008.02.015
M. Valko, D. Leibfritz, J. Moncol, M.T.D. Cronin, M. Mazur and J. Telser, Int. J. Biochem. Cell Biol., 39, 44 (2007); https://doi.org/10.1016/j.biocel.2006.07.001
F. Ursini, M. Maiorino and H.J. Forman, Redox Biol., 8, 205 (2016); https://doi.org/10.1016/j.redox.2016.01.010
L.A. Pham-Huy, H. He and C. Pham-Huy, Int. J. Biomed. Sci., 4, 89 (2008).
S. Noori, J. Clin. Cell. Immunol., 1, 413 (2012); https://doi.org/10.4172/scientificreports.413
J. Bouayed and T. Bohn, Nutrition, Well-Being and Health, InTech (2012).
C. Kerksick and D. Willoughby, J. Int. Soc. Sports Nutr., 2, 38 (2005); https://doi.org/10.1186/1550-2783-2-2-38
A.C. Carr and B. Frei, Am. J. Clin. Nutr., 69, 1086 (1999); https://doi.org/10.1093/ajcn/69.6.1086
H. Sies, Oxidative Stress, In: Oxidants and Antioxidants, Academic Press, New York (1991).
E.W. Neuman, J. Chem. Phys., 2, 31 (1934); https://doi.org/10.1063/1.1749353
A.W. Petrocelli and D.L. Kraus, J. Chem. Educ., 40, 146 (1963); https://doi.org/10.1021/ed040p146
C.B. Jackson and R.C. Werner, Adv. Chem. Ser., 19, 169 (1957); https://doi.org/10.1021/ba-1957-0019.ch018
M. Schmidt and H. Bipp, Z. Anorg. Allg. Chem., 303, 190 (1960); https://doi.org/10.1002/zaac.19603030312
A. Le Berre and Y. C. R. Berber, Acad. Sci. Paris, 260, 4299 (1965).
A. Le Berre and Y. Berguer, Bull. Soc. Chim. Fr., 85, 2363 (1966).
B.H.J. Bielski and J.M. Gebicki, Adv. Radiat. Chem., 2, 177 (1970).
G. Czapski, Annu. Rev. Phys. Chem., 22, 171 (1971); https://doi.org/10.1146/annurev.pc.22.100171.001131
P.F. Knowles, J.F. Gibson, F.M. Pick and R.C. Bray, Biochem. J., 111, 53 (1969); https://doi.org/10.1042/bj1110053
J.M. McCord and I. Fridovich, J. Biol. Chem., 244, 6049 (1969); https://doi.org/10.1016/S0021-9258(18)63504-5
J.S. Valentine and D. Mota de Freitas, J. Chem. Educ., 62, 990 (1985); https://doi.org/10.1021/ed062p990
C.S. St. Clair, H.B. Gray and J.S. Valentine, Inorg. Chem., 31, 925 (1992); https://doi.org/10.1021/ic00031a041
J.A. Fee, Eds.: M.A.J. Rodgers and E.L. Powers, Oxygen and Oxy-Radicals in Chemistry and Biology, Academic Press: New York (1981).
I. Fridovich, Adv. Inorg. Biochem., 1, 67 (1979).
A. Bakac, J.H. Espenson, I.I. Creaser and A.M. Sargeson, J. Am. Chem. Soc., 105, 7624 (1983); https://doi.org/10.1021/ja00364a025
W.H. Bannister and J.V. Bannister, Biological and Clinical Aspects of Superoxide and Superoxide Dismutase, Elsevier: Amsterdam (1980).
R. Nilsson, F.M. Pick and R.C. Bray, Biochim. Biophys. Acta, 145, 145 (1969); https://doi.org/10.1016/0304-4165(69)90022-1
I. Fridovich, Acc. Chem. Res., 5, 321 (1972); https://doi.org/10.1021/ar50058a001
B.H.J. Bielski, Photochem. Photobiol., 28, 645 (1978); https://doi.org/10.1111/j.1751-1097.1978.tb06986.x
B.H.J. Bielski, D.E. Cabelli, R.L. Arudi and A.B. Ross, J. Phys. Chem. Ref. Data, 14, 1041 (1985); https://doi.org/10.1063/1.555739
P.J. Wardman, J. Phys. Chem. Ref. Data, 18, 1637 (1989); https://doi.org/10.1063/1.555843
D.M. Stanbury, Adv. Inorg. Chem., 33, 69 (1989).
L. Vaska, Acc. Chem. Res., 9, 175 (1976); https://doi.org/10.1021/ar50101a002
L. Andrews, J. Am. Chem. Soc., 90, 7368 (1968); https://doi.org/10.1021/ja01028a048
J.C. Evans, J. Chem. Soc. D, 682 (1969); https://doi.org/10.1039/c29690000682
T. Ozawa, A. Hanaki and H. Yamamoto, FEBS Lett., 74, 99 (1977); https://doi.org/10.1016/0014-5793(77)80762-X
P. Geroge, Eds,: T.E. King, H.S. Mason and M. Morrison, Oxidases and Related Redox Systems, Wiley: New York (1965).
J.A. Fee and J.S. Valentine, Eds.: A.M. Michelson, J.M. Mecord and I. Fridovich, Superoxide and Superoxide Dismutase, Academic Press: New York (1977).
M. Faraggi and C. Houee-Levin, J. Chim. Phys., 96, 71 (1999); https://doi.org/10.1051/jcp:1999113
D. Solomon, P. Peretz and M. Faraggi, J. Phys. Chem., 86, 1842 (1982); https://doi.org/10.1021/j100207a021
R. Dietz, A.E.J. Fomo, B.E. Larcombe and M.E. Peover, J. Chem. Soc. B, 816 (1970); https://doi.org/10.1039/J29700000816
F. Magno, R. Seeber and S. Valcher, J. Electroanal. Chem., 83, 131 (1977); https://doi.org/10.1016/S0022-0728(77)80506-8
R.A. Johnson and E.G. Nidy, J. Org. Chem., 40, 1680 (1975); https://doi.org/10.1021/jo00899a049
D.T. Sawyer, D.T. Richens, E.J. Nanni Jr. and M.D. Stallings, Eds.: J.V. Bannister and H.A.O. Hill, Redox Reaction Chemistry of Superoxide Ion, In: Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutase: Developments in Biochemistry; Elsevier/North-Holland: New York, vol. 11A, pp 1-23 (1979).
E.J. Nanni Jr., Ph.D. Dissertation, University of California, Riverside, CA, USA (1980).
E.A. Mayeda and A.J. Bard, J. Am. Chem. Soc., 95, 6223 (1973); https://doi.org/10.1021/ja00800a012
R.M. Sellers and M.G. Simic, J. Am. Chem. Soc., 98, 6145 (1976); https://doi.org/10.1021/ja00436a014
D.T. Sawyer, M.J. Gibian, M.M. Morrison and E.T. Seo, J. Am. Chem. Soc., 100, 627 (1978); https://doi.org/10.1021/ja00470a046
M. Tezuka, H. Hamada, Y. Ohkatsu and T. Osa, Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 44, 17 (1976); https://doi.org/10.5796/kogyobutsurikagaku.44.17
Y.A. IIan, G. Czapanki and D. Meisel, Biochim. Biophys. Acta, 430, 209 (1976); https://doi.org/10.1016/0005-2728(76)90080-3
D. Behar, G. Czapski, J. Rabani, L.M. Dorfman and H.A. Schwarz, J. Phys. Chem., 74, 3209 (1970); https://doi.org/10.1021/j100711a009
G.W. Gokel, H.M. Gerdes and N.W. Rebert, Tetrahedron Lett., 17, 653 (1976); https://doi.org/10.1016/S0040-4039(00)74588-6
J.A. Imlay and S. Linn, Science, 240, 1302 (1988); https://doi.org/10.1126/science.3287616
E.R. Stadtman, Science, 257, 1220 (1992); https://doi.org/10.1126/science.1355616
C.E. Thomas, L.A. Morehouse and S.D. Aust, J. Biol. Chem., 260, 3275 (1985); https://doi.org/10.1016/S0021-9258(19)83617-7
B.M. Babior, R.S. Kipnes and J.T. Curnutte, J. Clin. Invest., 52, 741 (1973); https://doi.org/10.1172/JCI107236
J.T. Curnutte and B.M. Babior, J. Clin. Invest., 53, 1662 (1974); https://doi.org/10.1172/JCI107717
B.M. Babior, Braz. J. Med. Biol. Res., 30, 141 (1997); https://doi.org/10.1590/S0100-879X1997000200001
R.B. Johnston Jr. and S.L. Newman, Pediatr. Clin. North Am., 24, 365 (1977); https://doi.org/10.1016/S0031-3955(16)33424-1
S.J. Chanock, J. El Benna, R.M. Smith and B.M. Babior, J. Biol. Chem., 269, 24519 (1994); https://doi.org/10.1016/S0021-9258(17)31418-7
C.C. Winterbourn, Arch. Biochem. Biophys., 209, 159 (1981); https://doi.org/10.1016/0003-9861(81)90268-X
E. Cadenas, Annu. Rev. Biochem., 58, 79 (1989); https://doi.org/10.1146/annurev.bi.58.070189.000455
D.R. Gough and T.G. Cotter, Cell Death and Disease, Macmillan Publishers Limited (2011).
R.J. Campion, N. Purdie and N. Sutin, Inorg. Chem., 3, 1091 (1964); https://doi.org/10.1021/ic50018a006
T.J. Meyer and H. Taube, Inorg. Chem., 7, 2369 (1968); https://doi.org/10.1021/ic50069a038
M. Chou, C. Creutz and N. Sutin, J. Am. Chem. Soc., 99, 5615 (1977); https://doi.org/10.1021/ja00459a014
W. Böttcher, G.M. Brown and N. Sutin, Inorg. Chem., 18, 1447 (1979); https://doi.org/10.1021/ic50196a008
J.C. Brodovitch and A. McAuley, Inorg. Chem., 20, 1667 (1981); https://doi.org/10.1021/ic50220a009
B. Goyal, S. Solanki, S. Arora, A. Prakash and R.N. Mehrotra, J. Chem. Soc., Dalton Trans., 3109 (1995); https://doi.org/10.1039/dt9950003109
M. Martinez and M.A. Pitarque, J. Chem. Soc., Dalton Trans., 4107 (1995); https://doi.org/10.1039/dt9950004107
D. Chatterjee, J. Chem. Soc., Dalton Trans., 4389 (1996); https://doi.org/10.1039/DT9960004389
T.C. Lau, K.W.C. Lau and K. Lau, J. Chem. Soc., Dalton Trans., 3091 (1994); https://doi.org/10.1039/dt9940003091
M. Martinez, M.A. Pitarque and R. van Eldik, J. Chem. Soc., Dalton Trans., 3159 (1994); https://doi.org/10.1039/dt9940003159
D.H. Macartney and A. McAuley, Inorg. Chem., 22, 2062 (1983); https://doi.org/10.1021/ic00156a024
K. Lemma, A.M. Sargeson and L.I. Elding, J. Chem. Soc., Dalton Trans., 1167 (2000); https://doi.org/10.1039/a909484i
R.A. Marcus and N. Sutin, Biochim. Biophys. Acta Rev. Bioenerg., 811, 265 (1985); https://doi.org/10.1016/0304-4173(85)90014-X
L. Pauling and E.B. Wilson, Introduction to Quantum Mechanics, McGraw Hill: New York (1935).
M.A. Ratner and R.D. Levine, J. Am. Chem. Soc., 102, 4898 (1980); https://doi.org/10.1021/ja00535a010
M.H. Ford-Smith and N. Sutin, J. Am. Chem. Soc., 83, 1830 (1961); https://doi.org/10.1021/ja01469a015
G. Dulz and N. Sutin, Inorg. Chem., 2, 917 (1963); https://doi.org/10.1021/ic50009a010
M. Smoluchowski, Z. Phys. Chem., 92U, 129 (1918); https://doi.org/10.1515/zpch-1918-9209
R.A. Marcus, Rev. Mod. Phys., 65, 599 (1993); https://doi.org/10.1103/RevModPhys.65.599
R.A. Marcus, Angew. Chem. Int. Ed. Engl., 32, 1111 (1993); https://doi.org/10.1002/anie.199311113
A. Bakac, Physical Inorganic Chemistry: Reactions, Processes and Applications, John Wiley & Sons, Inc.: Hoboken, New Jersey (2010).
S. Wherland, Coord. Chem. Rev., 123, 169 (1993); https://doi.org/10.1016/0010-8545(93)85055-9
T.W. Swaddle, Chem. Rev., 105, 2573 (2005); https://doi.org/10.1021/cr030727g
R.A. Marcus, J. Phys. Chem. B, 102, 10071 (1998); https://doi.org/10.1021/jp9834457
J.M. Savéant, J. Am. Chem. Soc., 130, 4732 (2008); https://doi.org/10.1021/ja077480f
D.M. Stanbury, O. Haas and H. Taube, Inorg. Chem., 19, 518 (1980); https://doi.org/10.1021/ic50204a048
K. Zahir, J.H. Espenson and A. Bakac, J. Am. Chem. Soc., 110, 5059 (1988); https://doi.org/10.1021/ja00223a025
R.B. Jordan, Reaction Mechanisms of Inorganic and Organometallic Systems, Oxford University Press: New York (1991).
N. Sutin, Acc. Chem. Res., 15, 275 (1982); https://doi.org/10.1021/ar00081a002
N. Sutin, Prog. Inorg. Chem., 30, 441 (1983).
J.J. Zuckerman, Inorganic Reactions and Methods, VCH Publishers, Weinheim, Decrfield Beach, FL, vol. 15 (1986).
N.S. Hush, Trans. Faraday Soc., 57, 557 (1961); https://doi.org/10.1039/tf9615700557
N.R. Kestner, J. Logan and J. Jortner, J. Phys. Chem., 78, 2148 (1974); https://doi.org/10.1021/j100614a017
C.T. Lin, W. Boettcher, M. Chou, C. Creutz and N. Sutin, J. Am. Chem. Soc., 98, 6536 (1976); https://doi.org/10.1021/ja00437a020
J. Ulstrap, Charge Transfer Processes in Condensed Media, Springer: Verlag, Berlin (1979).
D. Newton and N. Sutin, Annu. Rev. Phys. Chem., 35, 437 (1984); https://doi.org/10.1146/annurev.pc.35.100184.002253
L.E. Bennett and H. Taube, Inorg. Chem., 7, 254 (1968); https://doi.org/10.1021/ic50060a017
J.R. Pladziewicz and J.H. Espenson, J. Phys. Chem., 75, 3381 (1971); https://doi.org/10.1021/j100690a034
Y. Tendler and M. Faraggi, J. Chem. Phys., 57, 1358 (1972); https://doi.org/10.1063/1.1678404
R.J. Christensen, J.H. Espenson and A.B. Butcher, Inorg. Chem., 12, 564 (1973); https://doi.org/10.1021/ic50121a014
H.E. Toma and J.M. Malin, J. Am. Chem. Soc., 97, 288 (1975); https://doi.org/10.1021/ja00835a010
D.E. Pennington and A.E. Martell, Coordination Chemistry, ed. ACS Monograph 174, ACS: Washington D.C., vol. 2 (1978).
C.A. Koval and D.W. Margerum, Inorg. Chem., 20, 2311 (1981); https://doi.org/10.1021/ic50221a074
D.H. Macartney and N. Sutin, Inorg. Chem., 24, 3403 (1985); https://doi.org/10.1021/ic00215a022
J.W. Herbert and D.H. Macartney, Inorg. Chem., 24, 4398 (1985); https://doi.org/10.1021/ic00219a040
M.N. Doyle, K. Libson, M. Woods, J.C. Sullivan and E. Deutsch, Inorg. Chem., 25, 3367 (1986); https://doi.org/10.1021/ic00239a011
J.R. Pladziewicz, A.J. Abrahamson, R.A. Davis and M.D. Likar, Inorg. Chem., 26, 2058 (1987); https://doi.org/10.1021/ic00260a010
H. Doine and T.W. Swaddle, Inorg. Chem., 27, 665 (1988); https://doi.org/10.1021/ic00277a019
K. Libson, M. Woods, J.C. Sullivan, J.W. Watkins II, R.C. Elder and E. Deutsch, Inorg. Chem., 27, 999 (1988); https://doi.org/10.1021/ic00279a013
J.M.A. Hoddenbagh and D.H. Macartney, Inorg. Chem., 29, 245 (1990);https://doi.org/10.1021/ic00327a019
M.S. Ram and A. Haim, Inorg. Chem., 30, 1319 (1991); https://doi.org/10.1021/ic00006a029
R. Sarala, S.B. Rabin and D.M. Stanbury, Inorg. Chem., 30, 3999 (1991); https://doi.org/10.1021/ic00021a007
S.A. Kazmi, A.L. Shorter and J.V. McArdle, Inorg. Chem., 23, 4332 (1984); https://doi.org/10.1021/ic00193a045
T.W. Newton, J. Chem. Educ., 45, 571 (1968); https://doi.org/10.1021/ed045p571
W.L. Reynolds and R.W. Lumry, Mechanisms of Electron Transfer, Ronald Press: New York (1966).
P.W. Atkins and M.C.R. Symons, The Structure of Inorganic Radicals, Elsevier: New York (1967).
A.F. Wells, Structural Inorganic Chemistry, Clarendon Press: Oxford, Edn. 4 (1975).
M.C.R. Symons, J. Chem. Soc., Dalton Trans., 1468 (1979); https://doi.org/10.1039/dt9790001468
W.K. Wilmarth, D.M. Stanbury, J.E. Byrd, H.N. Po and C. Chua, Coord. Chem. Rev., 51, 155 (1983); https://doi.org/10.1016/0010-8545(83)85010-3
R. Sarala, M.S. Islam, S.B. Rabin and D.M. Stanbury, Inorg. Chem., 29, 1133 (1990);https://doi.org/10.1021/ic00331a006
R.B. Jordon, Reaction Mechanism of Inorgani and Organometallic Systems, Oxford University Press (1991).
D.L. Ball and E.L. King, J. Am. Chem. Soc., 80, 1091 (1958); https://doi.org/10.1021/ja01538a019
H. Taube, H. Myers and R.L. Rich, J. Am. Chem. Soc., 75, 4118 (1953); https://doi.org/10.1021/ja01112a546
H. Taube, Adv. Inorg. Chem., 1, 1 (1959); https://doi.org/10.1016/S0065-2792(08)60251-4
P. George, J.S. Griffith. P.D. Boyer, H. Lardy and K. Myrbäck, The Enzymes, Academic Press, New York, vol. 1, p. 347 (1959).
R.G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes, Weinheim: New York (1991).
F.A. Cotton and G. Wilkinson, Advance Inorganic Chemistry, A Comprehensive Text, Wiley Eastern Limited,:New Delhi, Edn. 3 (1990).
A. Adin and A.G. Sykes, J. Chem. Soc. A, 354 (1968);https://doi.org/10.1039/J19680000354
A. Haim and N. Sutin, J. Am. Chem. Soc., 87, 4210 (1965); https://doi.org/10.1021/ja01096a051
J. Halpern and S. Nakamura, J. Am. Chem. Soc., 87, 3002 (1965); https://doi.org/10.1021/ja01091a036
R. Snellgrove and E.L. King, J. Am. Chem. Soc., 84, 4609 (1962); https://doi.org/10.1021/ja00882a060
R. Snellgrove and E.L. King, Inorg. Chem., 3, 288 (1964); https://doi.org/10.1021/ic50012a038
D.P. Fay and N. Sutin, Inorg. Chem., 9, 1291 (1970); https://doi.org/10.1021/ic50087a064
K. Wieghardt and A.G. Sykes, J. Chem. Soc., Dalton Trans., 651 (1974); https://doi.org/10.1039/DT9740000651
J. Halpern and L.E. Orgel, Discuss. Faraday Soc., 29, 7 (1960);https://doi.org/10.1039/DF9602900007
H. Taube and R.G. Gaunder, Inorg. Chem., 9, 2627 (1970); https://doi.org/10.1021/ic50094a001
F.R. Nordmeyer and C. Norris, J. Am. Chem. Soc., 93, 4044 (1971); https://doi.org/10.1021/ja00745a037
E.S. Gould and J.R. Barber Jr, J. Am. Chem. Soc., 93, 4045 (1971); https://doi.org/10.1021/ja00745a038
E.S. Gould, J. Am. Chem. Soc., 94, 4360 (1972); https://doi.org/10.1021/ja00767a064
M.Z. Hoffman and M. Simic, J. Am. Chem. Soc., 94, 1757 (1972); https://doi.org/10.1021/ja00760a063
A. Haim, Acc. Chem. Res., 8, 264 (1975); https://doi.org/10.1021/ar50092a002
E.S. Gould, J. Am. Chem. Soc., 96, 2373 (1974); https://doi.org/10.1021/ja00815a011
R.J. Campion, T.J. Conocchioli and N. Sutin, J. Am. Chem. Soc., 86, 4591 (1964); https://doi.org/10.1021/ja01075a015
R.G. Linck, Eds.: M.L. Tobe, MTP International Review of Science, Inorganic Chemistry, Series one, Butterworth: London (1972).
W.S. Melvin and A. Haim, Inorg. Chem., 16, 2016 (1977); https://doi.org/10.1021/ic50174a038
R.A. Marusak, P. Osvath, M. Kemper and A.G. Lappin, Inorg. Chem., 28, 1542 (1989); https://doi.org/10.1021/ic00307a024
R.C. Patel, R.E. Ball, J.F. Endicott and R.G. Hughes, Inorg. Chem., 9, 23 (1970); https://doi.org/10.1021/ic50083a005
U. El-Ayaan, R. F. Jameson and W. Linert, J. Chem. Soc., Dalton Trans., 1315 (1998); https://doi.org/10.1039/a708639c
M. Ardon and R.A. Plane, J. Am. Chem. Soc., 81, 3197 (1959); https://doi.org/10.1021/ja01522a008
J. Halpern, Q. Rev. Chem. Soc., 15, 207 (1961); https://doi.org/10.1039/qr9611500207
J.H. Espenson, Acc. Chem. Res., 3, 347 (1970); https://doi.org/10.1021/ar50034a004
J.K. Beattie and G.P. Haight Jr., Prog. Inorg. Chem., 17, 93 (1972).
R.G. Linck, Eds.: M.L. Tobe, MTP International Review of Science, Inorganic Chemistry, Series two, Butterworth: London, vol. 9, p. 173 (1974).
F. Basolo and R.G. Pearson, Mechanisms of Inorganic Reactions, Wiley Eastern Limited: New Delhi, Edn. 2, Chap. 6 (1977).
H. Taube and E.L. King, J. Am. Chem. Soc., 76, 4053 (1954); https://doi.org/10.1021/ja01644a077
H.A. Schwarz, D. Comstock, J.K. Yandell and R.W. Dodson, J. Phys. Chem., 78, 488 (1974); https://doi.org/10.1021/j100598a005
R.G. Linck, Eds.: I.M. Kolthoff and P.J. Elving, Treatise on Analytical Chemistry, Part 1, Wiley: New York (1979).
F.L. Harris and D.L. Toppen, Inorg. Chem., 17, 74 (1978); https://doi.org/10.1021/ic50179a016
J.M. Mayer and I.J. Rhile, Biochim. Biophys. Acta, 1655, 51 (2004); https://doi.org/10.1016/j.bbabio.2003.07.002
K. Chen, J. Hirst, R. Camba, C.A. Bonagura, C.D. Stout, B.K. Burgess and F.A. Armstrong, Nature, 405, 814 (2000); https://doi.org/10.1038/35015610
M.V. Huynh and T.J. Meyer, Chem. Rev., 107, 5004 (2007); https://doi.org/10.1021/cr0500030
J. Hudis and R.W. Dodson, J. Am. Chem. Soc., 78, 911 (1956); https://doi.org/10.1021/ja01586a011
N. Grover and H.H. Thorp, J. Am. Chem. Soc., 113, 7030 (1991); https://doi.org/10.1021/ja00018a048
W. Lui and H.H. Thorp, Transition Met. Coord. Chem., 1, 187 (1996).
R.I. Cukier, J. Phys. Chem., 98, 2377 (1994); https://doi.org/10.1021/j100060a027
J.Y. Fang and S. Hammes-Schiffer, J. Chem. Phys., 106, 8442 (1997); https://doi.org/10.1063/1.473903
R.I. Cukier and D.G. Nocera, Annu. Rev. Phys. Chem., 49, 337 (1998); https://doi.org/10.1146/annurev.physchem.49.1.337
C.W. Hoganson and G.T. Babcock, Science, 277, 1953 (1997); https://doi.org/10.1126/science.277.5334.1953
C. Costentin, D.H. Evans, M. Robert, J.-M. Savéant and P.S. Singh, J. Am. Chem. Soc., 127, 12490 (2005); https://doi.org/10.1021/ja053911n
S. Hammes-Schiffer, Acc. Chem. Res., 34, 273 (2001); https://doi.org/10.1021/ar9901117
J.M. Mayer, Annu. Rev. Phys. Chem., 55, 363 (2004); https://doi.org/10.1146/annurev.physchem.55.091602.094446
F. Himo and P.E.M. Siegbahn, Chem. Rev., 103, 2421 (2003); https://doi.org/10.1021/cr020436s
J.S. Wright, E.R. Johnson and G.A. Di Labio, J. Am. Chem. Soc., 123, 1173 (2001); https://doi.org/10.1021/ja002455u
M. Leopoldini, T. Marino, N. Russo and M. Toscano, J. Phys. Chem. A, 108, 4916 (2004); https://doi.org/10.1021/jp037247d
P. Alov, I. Tsakovska and I. Pajeva, Curr. Top. Med. Chem., 15, 85 (2015); https://doi.org/10.2174/1568026615666141209143702
G. Litwinienko and K.U. Ingold, Acc. Chem. Res., 40, 222 (2007); https://doi.org/10.1021/ar0682029
R.D. Cannon, Electron Transfer Reactions, Butterworths (1980).
B. Ahrens, M.G. Davidson, V.T. Forsyth, M.F. Mahon, A.L. Johnson, S.A. Mason, R.D. Price and P.R. Raithby, J. Am. Chem. Soc., 123, 9164 (2001); https://doi.org/10.1021/ja015849+
G. Litwinienko and K.U. Ingold, J. Org. Chem., 69, 5888 (2004); https://doi.org/10.1021/jo049254j
J. Stubbe and W. van der Donk, Chem. Rev., 98, 705 (1998); https://doi.org/10.1021/cr9400875
C. Aubert, M.H. Vos, P. Mathis, A.P.M. Eker and K. Brettel, Nature, 405, 586 (2000); https://doi.org/10.1038/35014644
G.T. Babcock, Proc. Natl. Acad. Sci. USA, 96, 12971 (1999); https://doi.org/10.1073/pnas.96.23.12971
J. Stubbe, D.G. Nocera, C.S. Yee and M.C.Y. Chang, Chem. Rev., 103, 2167 (2003); https://doi.org/10.1021/cr020421u
G.L. Closs and J.R. Miller, Science, 240, 440 (1988); https://doi.org/10.1126/science.240.4851.440
A. Magnuson, H. Berglund, P. Korall, L. Hammarström, B. Åkermark, S. Styring and L. Sun, J. Am. Chem. Soc., 119, 10720 (1997); https://doi.org/10.1021/ja972161h
M. Sjödin, S. Styring, B. Åkermark, L. Sun and L. Hammarström, J. Am. Chem. Soc., 122, 3932 (2000); https://doi.org/10.1021/ja993044k
A. Masarwa and D. Meyerstein, Adv. Inorg. Chem., 55, 271 (2004).
K.L. Rollick and J.K. Kochi, J. Am. Chem. Soc., 104, 1319 (1982); https://doi.org/10.1021/ja00369a030
R.A. Marcus, J. Chem. Phys., 24, 966 (1956); https://doi.org/10.1063/1.1742723
N. Sutin, J. Phys. Chem., 90, 3465 (1986); https://doi.org/10.1021/j100407a002
W. Fujita and K. Awaga, J. Am. Chem. Soc., 123, 3601 (2001); https://doi.org/10.1021/ja002873z
C.G. Pierpont and C.W. Lange, Prog. Inorg. Chem., 41, 331 (1994).
J.M. Manriquez, G.T. Yee, R.S. McLean, A.J. Epstein and J.S. Miller, Science, 252, 1415 (1991); https://doi.org/10.1126/science.252.5011.1415
H. Zhao Jr., M.J. Bazile Jr., J.R. Gal’an-Mascaros and K.R. Dunbar, Angew. Chem. Int. Ed., 42, 1015 (2003); https://doi.org/10.1002/anie.200390259
J.B. Gilroy, S.D.J. McKinnon, B.D. Koivisto and R.G. Hicks, Org. Lett., 9, 4837 (2007); https://doi.org/10.1021/ol702163a
W. Lu, Y. Zhang, J. Dai, Q.Y. Zhu, G.Q. Bian and D.Q. Zhang, Eur. J. Inorg. Chem., 2006, 1629 (2006); https://doi.org/10.1002/ejic.200500945
M. Gandelman, B. Rybtchinski, N. Ashkenazi, R.M. Gauvin and D. Milstein, J. Am. Chem. Soc., 123, 5372 (2001); https://doi.org/10.1021/ja0157393
A.E.J. deNooy, A.C. Besemer and H. vanBekkum, Synthesis, 1153 (1996); https://doi.org/10.1055/s-1996-4369
R.A. Sheldon and I. Arends, J. Mol. Catal. Chem., 251, 200 (2006); https://doi.org/10.1016/j.molcata.2006.02.016
P. Chaudhuri and K. Wieghardt, Prog. Inorg. Chem., 50, 151 (2001).
C.K. Jørgensen, Oxidation Numbers and Oxidation States, Spinger: Berlin (1969).
B. de Bruin, D.G.H. Hetterscheid, A.J.J. Koekoek and H. Grützmacher, Prog. Inorg. Chem., 55, 247 (2007).
N.G. Connelly, R.L. Kelly, M.D. Kitchen, R.M. Mills, R.F.D. Stansfield, M.W. Whiteley, S.M. Whiting and P. Woodward, J. Chem. Soc., Dalton Trans., 1317 (1981); https://doi.org/10.1039/DT9810001317
N.G. Connelly, P.G. Graham and J.B. Sheridan, J. Chem. Soc., Dalton Trans., 1619 (1986); https://doi.org/10.1039/DT9860001619
R.P. Aggarwal, N.G. Connelly, B.J. Dunne, M. Gilbert and A.G. Orpen, J. Chem. Soc., Dalton Trans., 1 (1991); https://doi.org/10.1039/DT9910000001
L. Brammer, N.G. Connelly, J. Edwin, W.E. Geiger, A.G. Orpen and J.B. Sheridan, Organometallics, 7, 1259 (1988); https://doi.org/10.1021/om00096a004
T.F. Block, R.F. Fenske and C.P. Casey, J. Am. Chem. Soc., 98, 441 (1976); https://doi.org/10.1021/ja00418a019
P.J. Krusic, U. Klabunde, C.P. Casey and T.F. Block, J. Am. Chem. Soc., 98, 2015 (1976); https://doi.org/10.1021/ja00423a086
B. Meunier, S.P. de Visser and S. Shaik, Chem. Rev., 104, 3947 (2004); https://doi.org/10.1021/cr020443g
R. Liu, K. Morokuma, A.M. Mebel and M.C. Lin, J. Phys. Chem., 100, 9314 (1996); https://doi.org/10.1021/jp953566w
K. Rachlewicz and L. Latos-Grazynski, Inorg. Chem., 35, 1136 (1996); https://doi.org/10.1021/ic950876k
M.W. Renner and J. Fajer, J. Biol. Inorg. Chem., 6, 823 (2001); https://doi.org/10.1007/s007750100276
J.I. van der Vlugt, Eur. J. Inorg. Chem., 2012, 363 (2012); https://doi.org/10.1002/ejic.201100752
V. Lyaskovskyy and B. de Bruin, ACS Catal., 2, 270 (2012); https://doi.org/10.1021/cs200660v
W. Kaim and B. Schwederski, Coord. Chem. Rev., 254, 1580 (2010); https://doi.org/10.1016/j.ccr.2010.01.009
M.A. Bigi, S.A. Reed and M.C. White, Nat. Chem., 3, 216 (2011); https://doi.org/10.1038/nchem.967
A. Caneschi, D. Gatteschi, R. Sessoli and P. Rey, Acc. Chem. Res., 22, 392 (1989); https://doi.org/10.1021/ar00167a004
H. Zimmer, D.C. Lankin and S.W. Horgan, Chem. Rev., 71, 229 (1971); https://doi.org/10.1021/cr60270a005
F.A. Chavez and P.K. Mascharak, Acc. Chem. Res., 33, 539 (2000); https://doi.org/10.1021/ar990089h
L.I. Simandi, Catalytic Activation of Dioxygen by Metal Complexes, Kluwer Academic Publishers (1992).
A. Samuni and G. Czapski, J. Phys. Chem., 74, 4592 (1970); https://doi.org/10.1021/j100720a024
H. Mimoun, L. Saussine, E. Daire, M. Postel, J. Fischer and R. Weiss, J. Am. Chem. Soc., 105, 3101 (1983); https://doi.org/10.1021/ja00348a025
B. Meunier, Biomimetic Oxidations Catalyzed by Transition Metal Complexes, Imperial College Press: London (2000).
A.E. Shilov and G.B. Shulpin, Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes, Kluwer (2000).
I.B. Afanasiev, Usp. Khim., 48, 977 (1979).
A. Bakac, Coord. Chem. Rev., 250, 2046 (2006); https://doi.org/10.1016/j.ccr.2006.02.001
M.F. Perutz, Nature, 228, 726 (1970); https://doi.org/10.1038/228726a0
C.G. Barraclough, G.A. Lawrance and P.A. Lay, Inorg. Chem., 17, 3317 (1978); https://doi.org/10.1021/ic50190a001
T. Shibahara, J. Chem. Soc. Chem. Commun., 864 (1973); https://doi.org/10.1039/C39730000864
A. Hoffman and H. Taube, Inorg. Chem., 7, 1971 (1968); https://doi.org/10.1021/ic50068a003
K.M. Davies and A.G. Sykes, J. Chem. Soc. A, 1418 (1971); https://doi.org/10.1039/j19710001418
M.R. Hyde and A.G. Sykes, J. Chem. Soc., Dalton Trans., 1550 (1974); https://doi.org/10.1039/DT9740001550
R. Davies and A.G. Sykes, J. Chem. Soc. A, 2831 (1968); https://doi.org/10.1039/j19680002831
Y. Sasaki, Bull. Chem. Soc. Jpn., 50, 1939 (1977); https://doi.org/10.1246/bcsj.50.1939
E.P. Talsi, V.P. Babenko, V.M. Nekipelov and A.A. Shubin, React. Kinet. Catal. Lett., 31, 209 (1986); https://doi.org/10.1007/BF02062534
S.K. Ghosh, S.K. Saha, M.C. Ghosh, R.N. Bose, J.W. Reed and E.S. Gould, Inorg. Chem., 31, 3358 (1992); https://doi.org/10.1021/ic00042a007
D.L. Duffy, D.A. House and J.A. Weil, J. Inorg. Nucl. Chem., 31, 2053 (1969); https://doi.org/10.1016/0022-1902(69)90020-7
R.E. Marsh and W.P. Schaefer, Acta Crystallogr. B, 24, 246 (1968); https://doi.org/10.1107/S0567740868002037
A.A. Vlèek, Collect. Czech. Chem. Commun., 25, 3036 (1960); https://doi.org/10.1135/cccc19603036
W.P. Schaefer, Inorg. Chem., 7, 725 (1968); https://doi.org/10.1021/ic50062a022
L. Pauling, The Nature of the Chemical Bond, Cornell University Press: New York (1960).
G.G. Christoph, R.E. Marsh and W.P. Schaefer, Inorg. Chem., 8, 291 (1969); https://doi.org/10.1021/ic50072a022
J.A. Weil and J.K. Kinnaird, J. Phys. Chem., 71, 3341 (1967); https://doi.org/10.1021/j100869a036
V.I. Belova and Y.R. Syrkin, Neorg. Khim. Akad. Nauk SSSR, 30, 109 (1955).
I. Bernal, E.A.V. Ebsworth and J.A. Weil, Proc. Chem. Soc., 57 (1959).
B.M. Hoffman, D.L. Diemente and F. Basolo, J. Am. Chem. Soc., 92, 61 (1970); https://doi.org/10.1021/ja00704a010
S. Barnartt and R.G. Charles, J. Electrochem. Soc., 109, 333 (1962); https://doi.org/10.1149/1.2425411
J.E. Barnes, J.B. Barrett, R.W. Brett and J. Brown, J. Inorg. Nucl. Chem., 30, 2207 (1968); https://doi.org/10.1016/0022-1902(68)80218-0
A. Haim and W.K. Wilmarth, J. Am. Chem. Soc., 83, 509 (1961); https://doi.org/10.1021/ja01464a001.
A.A. Gabovich and I.M. Reibel, Tr. Kishinevsk. Sel’khoz. lnst., 9, 185 (1956).
A.A. Gabovich and I.M. Reibel, Tr. Kishinevsk. Sel’khoz. lnst., 43, 61 (1966).
L.R. Thompson and W.K. Wilmarth, J. Phys. Chem., 56, 5 (1952); https://doi.org/10.1021/j150493a002
A.G. Sykes, Trans. Faraday Soc., 59, 1334 (1963); https://doi.org/10.1039/TF9635901334
K. Glau and K. Rehm, Z. Anorg. Allg. Chem., 237, 79 (1938); https://doi.org/10.1002/zaac.19382370107
A.G. Sykes and J.A. Weil, Prog. Inorg. Chem., 1, 13 (1970).