Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of Coagulation Process in Presence of Chitosan and Psyllium Plantago in Removal of Perchlorate at High Concentrations
Asian Journal of Chemistry,
Vol. 28 No. 10 (2016): Vol 28 Issue 10
Abstract
In this study, the efficiency of coagulation process for removal of perchlorate at high concentrations from aqueous solution was investigated. The effect of various parameters such as coagulant dosage, solution pH and initial perchlorate concentration on process efficiency was also studied. Moreover, the effect of both chitosan and psyllium plantago as natural coagulant aids in coagulation process for removing perchlorate was studied. The results showed that ferric chloride was better in perchlorate removal than that of aluminum sulfate. Moreover, the use of chitosan and plantago as coagulant aids led to an increase in removal efficiency of perchlorate in coagulation process (78 and 77.5 %, respectively). Thus, the results indicated that the coagulation process can be used as an effective approach in perchlorate removal at high concentrations. Moreover, the use of both chitosan and plantago as coagulant aids led to an increase in removal efficiency of perchlorate by coagulation process. Therefore, these compounds can also be used as natural adsorbents in removal of perchlorate.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Srinivasan and G.A. Sorial, Sep. Purif. Technol., 69, 7 (2009); doi:10.1016/j.seppur.2009.06.025.
- A. Srinivasan and Th. Viraraghavan, Int. J. Environ. Res. Public Health, 6, 1418 (2009); doi:10.3390/ijerph6041418.
- J.C. Brown, V.L. Snoeyink, L. Raskin and R. Lin, Water Res., 37, 206 (2003); doi:10.1016/S0043-1354(02)00243-9.
- E. Kumar, A. Bhatnagar, J.-A. Choi, U. Kumar, B. Min, Y. Kim, H. Song, K.J. Paeng, Y.M. Jung and R.A.I. Abou-Shanab, Chem. Eng. J., 159, 84 (2010); doi:10.1016/j.cej.2010.02.043.
- U.S. Environmental Protection Agency, National Perchlorate Detections as of September 23, 2004; http://www.epa.gov/fedfac/documents/perchlorate_map/nationalmap.htm.
- H. Ping, Z. Mi and X. Xin-hua, Research on Anaerobic Treatment of Perchlorate-Contaminated Water, Proceedings of the 231st ACS National Meeting; ACS; Atlanta, GA, USA, 26–30 March, (2006).
- M.H. Dehghani and R. Ghanbari, J. Health: Ardabil, 2, 93 (2012).
- G. Asgari, A.M.S. Mohammadi, A. Poormohammadi and M. Ahmadian, Fresenius Environ. Bull., 23, 720 (2014).
- J.D. Lee, S.H. Lee, M.H. Jo, P.K. Park, C.H. Lee and J.W. Kwak, Environ. Sci. Technol., 34, 3780 (2000); doi:10.1021/es9907461.
- A.M. Seid-Mohammadi, G. Asgari, M.T. Sammadi, M. Ahmadian and A. Poormohammadi, Res. J. Chem. Environ., 18, 19 (2014).
- Y. Javadzadeh, D. Hasanzadeh, S. Ghafourian, S.H. Nezhadi and A. Nokhodchi, Pharm. Sci., 15, 53 (2009).
- L. Chen, H. Chen, M. Shen, Z. Zhou and A. Ma, Agricul. Food Chem., 58, 3736 (2010); doi:10.1021/jf903801m.
- Sh. Ghodbanan, Water and Wastewater, 51, 50 (2004).
- A.B. Gancy and C.A. Wamser, Coagulants in Water Treatment, US Patent 4,238,347 (1980).
- K.C. Makris, D. Sarkar and R. Datta, Environ. Pollut., 140, 9 (2006); doi:10.1016/j.envpol.2005.08.075.
- A.F. Ashery, K. Radwan and Rashed M.I. Gar Al-Alm, The Effect of pH Control on Turbidity and NOM Removal in Conventional Water Treatment, Fifteenth International Water Technology Conference, IWTC 15, Alexandria, Egypt, pp. 1-16 (2010).
- J.G. Hering, P.Y. Chen, J.A. Wilkie and M. Elimelech, J. Environ. Eng., 123, 800 (1997); doi:10.1061/(ASCE)0733-9372(1997)123:8(800).
- G. Crini and P.M. Badot, Prog. Polym. Sci., 33, 399 (2008); doi:10.1016/j.progpolymsci.2007.11.001.
References
R. Srinivasan and G.A. Sorial, Sep. Purif. Technol., 69, 7 (2009); doi:10.1016/j.seppur.2009.06.025.
A. Srinivasan and Th. Viraraghavan, Int. J. Environ. Res. Public Health, 6, 1418 (2009); doi:10.3390/ijerph6041418.
J.C. Brown, V.L. Snoeyink, L. Raskin and R. Lin, Water Res., 37, 206 (2003); doi:10.1016/S0043-1354(02)00243-9.
E. Kumar, A. Bhatnagar, J.-A. Choi, U. Kumar, B. Min, Y. Kim, H. Song, K.J. Paeng, Y.M. Jung and R.A.I. Abou-Shanab, Chem. Eng. J., 159, 84 (2010); doi:10.1016/j.cej.2010.02.043.
U.S. Environmental Protection Agency, National Perchlorate Detections as of September 23, 2004; http://www.epa.gov/fedfac/documents/perchlorate_map/nationalmap.htm.
H. Ping, Z. Mi and X. Xin-hua, Research on Anaerobic Treatment of Perchlorate-Contaminated Water, Proceedings of the 231st ACS National Meeting; ACS; Atlanta, GA, USA, 26–30 March, (2006).
M.H. Dehghani and R. Ghanbari, J. Health: Ardabil, 2, 93 (2012).
G. Asgari, A.M.S. Mohammadi, A. Poormohammadi and M. Ahmadian, Fresenius Environ. Bull., 23, 720 (2014).
J.D. Lee, S.H. Lee, M.H. Jo, P.K. Park, C.H. Lee and J.W. Kwak, Environ. Sci. Technol., 34, 3780 (2000); doi:10.1021/es9907461.
A.M. Seid-Mohammadi, G. Asgari, M.T. Sammadi, M. Ahmadian and A. Poormohammadi, Res. J. Chem. Environ., 18, 19 (2014).
Y. Javadzadeh, D. Hasanzadeh, S. Ghafourian, S.H. Nezhadi and A. Nokhodchi, Pharm. Sci., 15, 53 (2009).
L. Chen, H. Chen, M. Shen, Z. Zhou and A. Ma, Agricul. Food Chem., 58, 3736 (2010); doi:10.1021/jf903801m.
Sh. Ghodbanan, Water and Wastewater, 51, 50 (2004).
A.B. Gancy and C.A. Wamser, Coagulants in Water Treatment, US Patent 4,238,347 (1980).
K.C. Makris, D. Sarkar and R. Datta, Environ. Pollut., 140, 9 (2006); doi:10.1016/j.envpol.2005.08.075.
A.F. Ashery, K. Radwan and Rashed M.I. Gar Al-Alm, The Effect of pH Control on Turbidity and NOM Removal in Conventional Water Treatment, Fifteenth International Water Technology Conference, IWTC 15, Alexandria, Egypt, pp. 1-16 (2010).
J.G. Hering, P.Y. Chen, J.A. Wilkie and M. Elimelech, J. Environ. Eng., 123, 800 (1997); doi:10.1061/(ASCE)0733-9372(1997)123:8(800).
G. Crini and P.M. Badot, Prog. Polym. Sci., 33, 399 (2008); doi:10.1016/j.progpolymsci.2007.11.001.