Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Density Functional Study of Structural and Electronic Properties of Free Gold and Silver Clusters
Asian Journal of Chemistry,
Vol. 28 No. 10 (2016): Vol 28 Issue 10
Abstract
Structural and electronic properties of gold and silver clusters with number of atoms “n” varying from 3 to 10 are investigated by the density functional theory (DFT) with generalized gradient approximation implemented in the SIESTA method. In the optimized lowest energy structures of gold and silver clusters, new lowest energy structures are reported. For each size, the Average bond lengths, binding energies, HOMO-LUMO gap, second-order difference of energy, ionization potential and the density of states were calculated. The lowest energy structures for (n £ 5) clusters are planar where the stability showed that the highest value in the binding energy is present in gold. Vertical ionization potential and HOMO-LUMO gap show obvious odd-even oscillations, indicating that Ag4,6,8,10, Au4,6,8,10, clusters keep high stabilities in comparison with their neighboring clusters. The variation of second-order difference of energy shows stabilities of gold and silver clusters. Analyzing the density of states, it is found that the gold is higher density of states near Fermi level than silver.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W.A. de Heer, Rev. Mod. Phys., 65, 611 (1993); doi:10.1103/RevModPhys.65.611.
- M. Brack, Rev. Mod. Phys., 65, 677 (1993); doi:10.1103/RevModPhys.65.677.
- M. Valden, X. Lai and D.W. Goodman, Science, 281, 1647 (1998); doi:10.1126/science.281.5383.1647.
- M.B. Knickelbein, Annu. Rev. Phys. Chem., 50, 79 (1999); doi:10.1146/annurev.physchem.50.1.79.
- P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen and H. Topsoe, Science, 295, 2053 (2002); doi:10.1126/science.1069325.
- C. Binns, Surf. Sci. Rep., 44, 1 (2001); doi:10.1016/S0167-5729(01)00015-2.
- S.J. Park, T.A. Taton and C.A. Mirkin, Science, 295, 651 (2002); doi:10.1126/science.1066348.
- R.J. Nichols, D.I. Gittins, D. Bethell and D.J. Schiffrin, Nature, 408, 67 (2000); doi:10.1038/35040518.
- H. Hakkinen, Chem. Soc. Rev., 37, 1847 (2008); doi:10.1039/b717686b.
- A. Deka and R.C. Deka, J. Mol. Struct. THEOCHEM, 870, 83 (2008); doi:10.1016/j.theochem.2008.09.018.
- E.M. Fernandez, J.M. Soler, L.L. Garzon and C. Balbas, Phys. Rev. B, 70, 165403 (2004); doi:10.1103/PhysRevB.70.165403.
- H. Hakkinen and U. Landman, Phys. Rev. B, 62, 2287 (2000); doi:10.1103/PhysRevB.62.R2287.
- T.M. Bernhardt, Int. J. Mass Spectrom., 243, 1 (2005); doi:10.1016/j.ijms.2004.12.015.
- K.O.E. Henriksson, K. Nordlund and J. Keinonen, Phys. Rev. B, 71, 014117 (2005); doi:10.1103/PhysRevB.71.014117.
- V.E. Matulis and O.A. Ivaskevich, Comput. Mater. Sci., 35, 268 (2006); doi:10.1016/j.commatsci.2004.08.011.
- H. Hakkinen and M. Moseler, Comput. Mater. Sci., 35, 332 (2006); doi:10.1016/j.commatsci.2004.08.017.
- M. Yang, K.A. Jackson and J. Jellinek, J. Chem. Phys., 125, 144308 (2006); doi:10.1063/1.2351818.
- P. Hohenberg and W. Kohn, Phys. Rev. B, 136(3B), 864 (1964); doi:10.1103/PhysRev.136.B864.
- W. Kohn and L.J. Sham, Phys. Rev. A, 140(4A), 1133 (1965); doi:10.1103/PhysRev.140.A1133.
- J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 78, 1396 (1997); doi:10.1103/PhysRevLett.78.1396.
- J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996); doi:10.1103/PhysRevLett.77.3865.
- J.M. Soler, M.R. Beltrán, K. Michaelian, I.L. Garzón, P. Ordejón, D. Sánchez-Portal and E. Artacho, Phys. Rev. B, 61, 5771 (2000); doi:10.1103/PhysRevB.61.5771.
- J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón and D. Sánchez-Portal J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón and D. Sánchez-Portal, J. Phys. Condens. Matter, 14, 2745 (2002); doi:10.1088/0953-8984/14/11/302.
- J.L. Martins, N. Troullier and S.-H. Wei, Phys. Rev. B, 43, 2213 (1991); doi:10.1103/PhysRevB.43.2213.
- A. Garcia, ATOM User’s Manual. Version 3.2, July (2002).
- H. Hakkinen, B. Yoon, U. Landman, X. Li, H.-J. Zhai and L.-S. Wang, J. Phys. Chem. A, 107, 6168 (2003); doi:10.1021/jp035437i.
- V. Beutel, H.G. Kramer, G.L. Bhale, M. Kuhn, L. Weyers and W. Demtroder, J. Chem. Phys., 98, 2699 (1993); doi:10.1063/1.464151.
- D. Morse, Chem. Rev., 86, 1049 (1986); doi:10.1021/cr00076a005.
- H. Kahnouji, H. Najafvandzadeh, S.J. Hashemifar, M. Alaei and H. Akbarzadeh, Chem. Phys. Lett., 630, 101 (2015); doi:10.1016/j.cplett.2015.04.035.
- N. Nilius, T.M. Wallis and W. Ho, Science, 297, 1853 (2002); doi:10.1126/science.1075242.
- C.N.R. Rao, G.U. Kulkarni, P.J. Thomas and P.P. Edwards, Chem. Eur. J., 8, 28 (2002); doi:10.1002/1521-3765(20020104)8:1<28::AID-CHEM28>3.0.CO;2-B.
- C. Jackschath, I. Rabin and W. Schulze, Ber. Bunsenges. Phys. Chem., 96, 1200 (1992); doi:10.1002/bbpc.19920960924.
- M.A. Tafoughalt and M. Samah, Physica B, 407, 2014 (2012); doi:10.1016/j.physb.2012.01.131.
- B. Corain, G. Schmid and N. Toshima, Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control, Elsevier (2008).
References
W.A. de Heer, Rev. Mod. Phys., 65, 611 (1993); doi:10.1103/RevModPhys.65.611.
M. Brack, Rev. Mod. Phys., 65, 677 (1993); doi:10.1103/RevModPhys.65.677.
M. Valden, X. Lai and D.W. Goodman, Science, 281, 1647 (1998); doi:10.1126/science.281.5383.1647.
M.B. Knickelbein, Annu. Rev. Phys. Chem., 50, 79 (1999); doi:10.1146/annurev.physchem.50.1.79.
P.L. Hansen, J.B. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen and H. Topsoe, Science, 295, 2053 (2002); doi:10.1126/science.1069325.
C. Binns, Surf. Sci. Rep., 44, 1 (2001); doi:10.1016/S0167-5729(01)00015-2.
S.J. Park, T.A. Taton and C.A. Mirkin, Science, 295, 651 (2002); doi:10.1126/science.1066348.
R.J. Nichols, D.I. Gittins, D. Bethell and D.J. Schiffrin, Nature, 408, 67 (2000); doi:10.1038/35040518.
H. Hakkinen, Chem. Soc. Rev., 37, 1847 (2008); doi:10.1039/b717686b.
A. Deka and R.C. Deka, J. Mol. Struct. THEOCHEM, 870, 83 (2008); doi:10.1016/j.theochem.2008.09.018.
E.M. Fernandez, J.M. Soler, L.L. Garzon and C. Balbas, Phys. Rev. B, 70, 165403 (2004); doi:10.1103/PhysRevB.70.165403.
H. Hakkinen and U. Landman, Phys. Rev. B, 62, 2287 (2000); doi:10.1103/PhysRevB.62.R2287.
T.M. Bernhardt, Int. J. Mass Spectrom., 243, 1 (2005); doi:10.1016/j.ijms.2004.12.015.
K.O.E. Henriksson, K. Nordlund and J. Keinonen, Phys. Rev. B, 71, 014117 (2005); doi:10.1103/PhysRevB.71.014117.
V.E. Matulis and O.A. Ivaskevich, Comput. Mater. Sci., 35, 268 (2006); doi:10.1016/j.commatsci.2004.08.011.
H. Hakkinen and M. Moseler, Comput. Mater. Sci., 35, 332 (2006); doi:10.1016/j.commatsci.2004.08.017.
M. Yang, K.A. Jackson and J. Jellinek, J. Chem. Phys., 125, 144308 (2006); doi:10.1063/1.2351818.
P. Hohenberg and W. Kohn, Phys. Rev. B, 136(3B), 864 (1964); doi:10.1103/PhysRev.136.B864.
W. Kohn and L.J. Sham, Phys. Rev. A, 140(4A), 1133 (1965); doi:10.1103/PhysRev.140.A1133.
J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 78, 1396 (1997); doi:10.1103/PhysRevLett.78.1396.
J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996); doi:10.1103/PhysRevLett.77.3865.
J.M. Soler, M.R. Beltrán, K. Michaelian, I.L. Garzón, P. Ordejón, D. Sánchez-Portal and E. Artacho, Phys. Rev. B, 61, 5771 (2000); doi:10.1103/PhysRevB.61.5771.
J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón and D. Sánchez-Portal J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón and D. Sánchez-Portal, J. Phys. Condens. Matter, 14, 2745 (2002); doi:10.1088/0953-8984/14/11/302.
J.L. Martins, N. Troullier and S.-H. Wei, Phys. Rev. B, 43, 2213 (1991); doi:10.1103/PhysRevB.43.2213.
A. Garcia, ATOM User’s Manual. Version 3.2, July (2002).
H. Hakkinen, B. Yoon, U. Landman, X. Li, H.-J. Zhai and L.-S. Wang, J. Phys. Chem. A, 107, 6168 (2003); doi:10.1021/jp035437i.
V. Beutel, H.G. Kramer, G.L. Bhale, M. Kuhn, L. Weyers and W. Demtroder, J. Chem. Phys., 98, 2699 (1993); doi:10.1063/1.464151.
D. Morse, Chem. Rev., 86, 1049 (1986); doi:10.1021/cr00076a005.
H. Kahnouji, H. Najafvandzadeh, S.J. Hashemifar, M. Alaei and H. Akbarzadeh, Chem. Phys. Lett., 630, 101 (2015); doi:10.1016/j.cplett.2015.04.035.
N. Nilius, T.M. Wallis and W. Ho, Science, 297, 1853 (2002); doi:10.1126/science.1075242.
C.N.R. Rao, G.U. Kulkarni, P.J. Thomas and P.P. Edwards, Chem. Eur. J., 8, 28 (2002); doi:10.1002/1521-3765(20020104)8:1<28::AID-CHEM28>3.0.CO;2-B.
C. Jackschath, I. Rabin and W. Schulze, Ber. Bunsenges. Phys. Chem., 96, 1200 (1992); doi:10.1002/bbpc.19920960924.
M.A. Tafoughalt and M. Samah, Physica B, 407, 2014 (2012); doi:10.1016/j.physb.2012.01.131.
B. Corain, G. Schmid and N. Toshima, Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control, Elsevier (2008).