Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of pH, Time and Temperature on Forced Degradation Studies of Quercetin in Presence of Polymers
Asian Journal of Chemistry,
Vol. 28 No. 10 (2016): Vol 28 Issue 10
Abstract
This study investigated the influence of pH, time and temperature on the degradation and adsorption of quercetin by molecularly imprinted polymer beads and non-imprinted polymers. Molecularly imprinted polymers and non-imprinted polymers were prepared by precipitation polymerization using acrylamide and 4-vinylpyridine co-monomers and ethylene glycol dimethacrylate (EGDMA) cross-linker. The polymers were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and elemental analysis. Adsorption/degradation studies were carried out at varying pH, time and temperature. Maximum quercetin adsorption by molecularly imprinted polymer and non-imprinted polymer was observed at pH 4 (20 °C) and pH 6 (60 °C). Highest degradation in blank solutions was seen at pH 2 at 60 °C after 120 h. HPLC analysis showed the presence of degradation products. Quercetin was released back into solution in some instances which arose a potential of the prepared molecularly imprinted polymers in being used as future prospect in drug delivery systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.B. Harborne and C.A. Williams, Phytochemistry, 55, 481 (2000); doi:10.1016/S0031-9422(00)00235-1.
- K.E. Heim, A.R. Tagliaferro and D.J. Bobilya, J. Nutr. Biochem., 13, 572 (2002); doi:10.1016/S0955-2863(02)00208-5.
- A. Crozier, M.E.J. Lean, M.S. McDonald and C. Black, J. Agric. Chem., 45, 590 (1997); doi:10.1021/jf960339y.
- M.S. Charde, J. Kumar, A.S. Welankiwar and R.D. Chakole, Int. J. Adv. Pharm., 2, 34 (2013).
- G. Ngwa, Drug Deliv. Technol., 10, 56 (2010).
- J.B. Zvezdanović, J.S. Stanojević, D. Markovic and D. Cvetkovic, J. Serb. Chem. Soc., 77, 297 (2012); doi:10.2298/JSC110618180Z.
- G.J. Smith, S.J. Thomsen, K.R. Markham, C. Andary and D. Cardon, J. Photochem. Photobiol. Chem., 136, 87 (2000); doi:10.1016/S1010-6030(00)00320-8.
- I.G. Zenkevich, A.Y. Eshchenko, S.V. Makarova, A.G. Vitenberg, Y.G. Dobryakov and V.A. Utsal, Molecules, 12, 654 (2007); doi:10.3390/12030654.
- Y. Zheng, I.S. Haworth, Z. Zuo, M.S.S. Chow and A.H.L. Chow, J. Pharm. Sci., 94, 1079 (2005); doi:10.1002/jps.20325.
- A. Pardo, L. Mespouille, B. Blankert, P. Trouillas, M. Surin, P. Dubois and P. Duez, J. Chromatogr. A, 1364, 128 (2014); doi:10.1016/j.chroma.2014.08.064.
- X. Song, J. Li, J. Wang and L. Chen, Talanta, 80, 694 (2009); doi:10.1016/j.talanta.2009.07.051.
- V. Pakade, S. Lindahl, L. Chimuka and C. Turner, J. Chromatogr. A, 1230, 15 (2012); doi:10.1016/j.chroma.2012.01.051.
- M.M. Castro López, M.C. Cela Pérez, M.S. Dopico García, J.M. López Vilariño, M.V. González Rodríguez and L.F. Barral Losada, Anal. Chim. Acta, 721, 68 (2012); doi:10.1016/j.aca.2012.01.049.
- S.A. Piletsky, N.W. Turner and P. Laitenberger, Med. Eng. Phys., 28, 971 (2006); doi:10.1016/j.medengphy.2006.05.004.
- W. Li and S. Li, Adv. Polym. Sci., 206, 191 (2006); doi:10.1007/12_2006_105.
- R.J. Krupadam, Polycycl. Arom. Comp., 32, 313 (2012); doi:10.1080/10406638.2011.633591.
- T.S. Bedwell and M.J. Whitcombe, Anal. Bioanal. Chem., 408, 1735 (2016); doi:10.1007/s00216-015-9137-9.
- Z. Li, M. Day, J.F. Ding and K. Faid, Macromolecules, 38, 2620 (2005); doi:10.1021/ma0478308.
- Y. Duan, J. Chem. Pharm. Res., 6, 236 (2014).
- A.N. Chebotarev and D.V. Snigur, J. Anal. Chem., 70, 55 (2015); doi:10.1134/S1061934815010062.
- N. Buchner, A. Krumbein, S. Rohn and L.W. Kroh, Rapid Commun. Mass Spectrom., 20, 3229 (2006); doi:10.1002/rcm.2720.
- S. Dall'Acqua, G. Miolo, G. Innocenti and S. Caffieri, Molecules, 17, 8898 (2012); doi:10.3390/molecules17088898.
- T. Rosenau and W.D. Habicher, Tetrahedron, 51, 7919 (1995); doi:10.1016/0040-4020(95)00421-4.
- L.V. Jorgensen, C. Cornett, U. Justesen, L.H. Skibsted and L.O. Dragsted, Free Radic. Res., 29, 339 (1998); doi:10.1080/10715769800300381.
- A.K. Timbola, C.D. Souza, C. Giacomelli and A. Spinelli, J. Braz. Chem. Soc., 17, 139 (2006); doi:10.1590/S0103-50532006000100020.
- B. Yang, A. Kotani, K. Arai and F. Kusu, Anal. Sci., 17, 599 (2001); doi:10.2116/analsci.17.599.
- A.M.O. Brett and M.E. Ghica, Electroanalysis, 15, 1745 (2003); doi:10.1002/elan.200302800.
References
J.B. Harborne and C.A. Williams, Phytochemistry, 55, 481 (2000); doi:10.1016/S0031-9422(00)00235-1.
K.E. Heim, A.R. Tagliaferro and D.J. Bobilya, J. Nutr. Biochem., 13, 572 (2002); doi:10.1016/S0955-2863(02)00208-5.
A. Crozier, M.E.J. Lean, M.S. McDonald and C. Black, J. Agric. Chem., 45, 590 (1997); doi:10.1021/jf960339y.
M.S. Charde, J. Kumar, A.S. Welankiwar and R.D. Chakole, Int. J. Adv. Pharm., 2, 34 (2013).
G. Ngwa, Drug Deliv. Technol., 10, 56 (2010).
J.B. Zvezdanović, J.S. Stanojević, D. Markovic and D. Cvetkovic, J. Serb. Chem. Soc., 77, 297 (2012); doi:10.2298/JSC110618180Z.
G.J. Smith, S.J. Thomsen, K.R. Markham, C. Andary and D. Cardon, J. Photochem. Photobiol. Chem., 136, 87 (2000); doi:10.1016/S1010-6030(00)00320-8.
I.G. Zenkevich, A.Y. Eshchenko, S.V. Makarova, A.G. Vitenberg, Y.G. Dobryakov and V.A. Utsal, Molecules, 12, 654 (2007); doi:10.3390/12030654.
Y. Zheng, I.S. Haworth, Z. Zuo, M.S.S. Chow and A.H.L. Chow, J. Pharm. Sci., 94, 1079 (2005); doi:10.1002/jps.20325.
A. Pardo, L. Mespouille, B. Blankert, P. Trouillas, M. Surin, P. Dubois and P. Duez, J. Chromatogr. A, 1364, 128 (2014); doi:10.1016/j.chroma.2014.08.064.
X. Song, J. Li, J. Wang and L. Chen, Talanta, 80, 694 (2009); doi:10.1016/j.talanta.2009.07.051.
V. Pakade, S. Lindahl, L. Chimuka and C. Turner, J. Chromatogr. A, 1230, 15 (2012); doi:10.1016/j.chroma.2012.01.051.
M.M. Castro López, M.C. Cela Pérez, M.S. Dopico García, J.M. López Vilariño, M.V. González Rodríguez and L.F. Barral Losada, Anal. Chim. Acta, 721, 68 (2012); doi:10.1016/j.aca.2012.01.049.
S.A. Piletsky, N.W. Turner and P. Laitenberger, Med. Eng. Phys., 28, 971 (2006); doi:10.1016/j.medengphy.2006.05.004.
W. Li and S. Li, Adv. Polym. Sci., 206, 191 (2006); doi:10.1007/12_2006_105.
R.J. Krupadam, Polycycl. Arom. Comp., 32, 313 (2012); doi:10.1080/10406638.2011.633591.
T.S. Bedwell and M.J. Whitcombe, Anal. Bioanal. Chem., 408, 1735 (2016); doi:10.1007/s00216-015-9137-9.
Z. Li, M. Day, J.F. Ding and K. Faid, Macromolecules, 38, 2620 (2005); doi:10.1021/ma0478308.
Y. Duan, J. Chem. Pharm. Res., 6, 236 (2014).
A.N. Chebotarev and D.V. Snigur, J. Anal. Chem., 70, 55 (2015); doi:10.1134/S1061934815010062.
N. Buchner, A. Krumbein, S. Rohn and L.W. Kroh, Rapid Commun. Mass Spectrom., 20, 3229 (2006); doi:10.1002/rcm.2720.
S. Dall'Acqua, G. Miolo, G. Innocenti and S. Caffieri, Molecules, 17, 8898 (2012); doi:10.3390/molecules17088898.
T. Rosenau and W.D. Habicher, Tetrahedron, 51, 7919 (1995); doi:10.1016/0040-4020(95)00421-4.
L.V. Jorgensen, C. Cornett, U. Justesen, L.H. Skibsted and L.O. Dragsted, Free Radic. Res., 29, 339 (1998); doi:10.1080/10715769800300381.
A.K. Timbola, C.D. Souza, C. Giacomelli and A. Spinelli, J. Braz. Chem. Soc., 17, 139 (2006); doi:10.1590/S0103-50532006000100020.
B. Yang, A. Kotani, K. Arai and F. Kusu, Anal. Sci., 17, 599 (2001); doi:10.2116/analsci.17.599.
A.M.O. Brett and M.E. Ghica, Electroanalysis, 15, 1745 (2003); doi:10.1002/elan.200302800.