Copyright (c) 2023 ANKIT SHARMA, Deepa Meena, Kiran Parashar, Deepti Goyal, Sakshi Kabra Malpani, Ashu Rani
This work is licensed under a Creative Commons Attribution 4.0 International License.
Extraction of Silica from Different Solid Wastes and Its Application as Catalyst Support for Vapour Phase Oxidation of Aromatic Hydrocarbon
Corresponding Author(s) : ANKIT SHARMA
Asian Journal of Chemistry,
Vol. 35 No. 10 (2023): Vol 35 Issue 10, 2023
Abstract
In present study, the research work has been divided into two sections viz. Firstly, amorphous silica was extracted from different silica rich agricultural and industrial waste materials (fly ash, perlite and rice husk ash) via sol-gel method. The extracted silica (RHA-Si, Perlite-Si, FA-Si) was characterized using BET surface area, FESEM, EDS, XRD, NMR and FTIR techniques. The surface area and particle size of extracted silica was found to be 23.06-255.5 m2/g and 61-267 nm. Secondly, fly ash silica was used as catalyst support and modified desirably by loading different molybdenum weight percentages via acid impregnation method. The presence of MoO3 on the surface of extracted silica were confirmed by different characterization techniques. The kinetic studies of the FASi/Mo-15 catalyst for the vapour phase oxidation of benzene was also investigated by employing the Mars Van Krevelen model to analyze the reaction mechanism and rate of the process. The vapour phase oxidation reaction follows zero order kinetics, with faster benzene conversion occurring at lower intake concentrations and higher reaction temperatures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Ghorbani, H. Younesi, Z. Mehraban, M.S. Çelik, A.A. Ghoreyshi and M. Anbia, J. Taiwan Inst. Chem. Eng., 44, 821 (2013); https://doi.org/10.1016/j.jtice.2013.01.019
- S. Katara, S. Kabra, D. Goyal, R. Hada, A. Sharma and A. Rani, Mater. Today Proc., 42, 1409 (2021); https://doi.org/10.1016/j.matpr.2021.01.148
- R. Prasad and M. Pandey, Bull. Chem. React. Eng. Catal., 7, 1 (2012); https://doi.org/10.9767/bcrec.7.1.1216.1-25
- X. Chen, E. Hadde, S. Liu and Y. Peng, Miner. Eng., 113, 41 (2017); https://doi.org/10.1016/j.mineng.2017.08.001
- C. Contado, Front Chem., 6, 48 (2015); https://doi.org/10.3389/fchem.2015.00048
- M. Kot, R. Wojcieszak, E. Janiszewska, M. Pietrowski and M. Zieliñski, Materials, 14, 968 (2021); https://doi.org/10.3390/ma14040968
- J.A.G. Coumans, E. Demiröz, N. Kosinov and E.J.M. Hensen, ChemCatChem, 14, e202200266 (2022); https://doi.org/10.1002/cctc.202200266
- S. Faisal, P.K. Maity, Q. Zang, T.B. Samarakoon, R.L. Sourk and P.R. Hanson, ACS Comb. Sci., 18, 387 (2016); https://doi.org/10.1021/acscombsci.6b00041
- K.R. Milleman, J.L. Milleman, J.E. Creeth, A. Butler and M.L. Bosma, J. Clin. Dent., 27, 7 (2016).
- A. Ketov, V. Korotaev, L. Rudakova, I. Vaisman, L. Barbieri and I. Lancellotti, Int. J. Appl. Ceram. Technol., 18, 394 (2021); https://doi.org/10.1111/ijac.13654
- P. Lu and Y.L. Hsieh, Powder Technol., 225, 149 (2012); https://doi.org/10.1016/j.powtec.2012.04.002
- E. Phumnok, P. Khongprom and S. Ratanawilai, ACS Omega, 7, 8364 (2022); https://doi.org/10.1021/acsomega.1c05848
- A.S. Dorcheh and M.H. Abbasi, J. Mater. Process. Technol., 199, 10 (2008); https://doi.org/10.1016/j.jmatprotec.2007.10.060
- G. Rey, S.L. Vivod, S. Singla, T. Benyo, J. King, S.S. Chuang and A. Dhinojwala, ACS Appl. Mater. Interfaces, 13, 41084 (2021); https://doi.org/10.1021/acsami.1c10879
- A. Farsad, A. Ahmadpour, T.R. Bastami and A. Yaqubzadeh, J. Sol-Gel Sci. Technol., 84, 246 (2017); https://doi.org/10.1007/s10971-017-4498-5
- J.P. Nayak and J. Bera, Trans. Indian Ceram. Soc., 68, 91 (2009); https://doi.org/10.1080/0371750X.2009.11082163
- X. Ma, B. Zhou, W. Gao, Y. Qu, L. Wang, Z. Wang and Y. Zhu, Powder Technol., 217, 497 (2012); https://doi.org/10.1016/j.powtec.2011.11.009
- U. Ghani, S. Hussain, A. Ali, V. Tirth, A. Algahtani, A. Zaman, M. Mushtaq, K. Althubeiti and M. Aljohani, ACS Omega, 7, 6113 (2022); https://doi.org/10.1021/acsomega.1c06553
- H.I. El Shimi, N.K. Attia, El G.I. Diwani and El S.T. Sheltawy, Int. J. Energy Res., 40, 1743 (2016); https://doi.org/10.1002/er.3546
- Y. Yang, P. Zhang, J. Jiang, Y. Dai, M. Wu, Y. Pan and L. Ni, J. Sol-Gel Sci. Technol., 87, 408 (2018); https://doi.org/10.1007/s10971-018-4733-8
- M. Yoldi, E.G. Fuentes-Ordoñez, S.A. Korili and A. Gil, Micropor. Mesopor. Mater., 287, 183 (2019); https://doi.org/10.1016/j.micromeso.2019.06.009
- M. Kasai, Y. Kobayashi, M. Togo and A. Nakahira, Mater. Today Proc., 16, 232 (2019); https://doi.org/10.1016/j.matpr.2019.05.247
- S.K. Malpani, D. Goyal, S. Katara and A. Rani, Chem. Pap., 75, 3017 (2021); https://doi.org/10.1007/s11696-020-01501-x
- D. Jain, C. Khatri and A. Rani, Fuel, 90, 2083 (2011); https://doi.org/10.1016/j.fuel.2010.09.025
- I. Majchrzak-Kucêba, J. Therm. Anal. Calorim., 107, 911 (2012); https://doi.org/10.1007/s10973-011-1908-8
- J.A. Costa, V.H. Sarmento, L.P. Romão and C.M. Paranhos, Environ. Sci. Pollut. Res. Int., 26, 25476 (2019); https://doi.org/10.1007/s11356-019-05852-1
- J.-M. Brégeault, M. Vennat, Laurent Salles, J.-Y. Piquemal, Y. Mahha, E. Briot, P.C. Bakala, A. Atlamsani and R. Thouvenot, J. Mol. Catal. Chem., 250, 177 (2006); https://doi.org/10.1016/j.molcata.2006.01.027
- H.H. Kung, Transition Metal Oxides: Surface Chemistry and Catalysis, Elsevier (1989).
- G. Centi, F. Cavani and F. Trifirò, Selective Oxidation by Heterogeneous Catalysis, Kluwer Academic/Plenum Publishers: New York, vol. 26 (2001).
- A. Gervasini, L. Wahba, M.D. Finol and J.F. Lamonier, Mater. Sci. Appl., 3, 195 (2012); https://doi.org/10.4236/msa.2012.34030
- S.V. Kotov and E. Balbolov, J. Mol. Catal. Chem., 176, 41 (2001); https://doi.org/10.1016/S1381-1169(01)00244-8
- J.A. Melero, J. Iglesias, J.M. Arsuaga, J. Sainz-Pardo, P. De Frutos and S. Blázquez, Appl. Catal. A Gen., 331, 84 (2007); https://doi.org/10.1016/j.apcata.2007.07.031
- Z. Song, N. Mimura, J.J. Bravo-Suárez, T. Akita, S. Tsubota and S.T. Oyama, Appl. Catal. A Gen., 316, 142 (2007); https://doi.org/10.1016/j.apcata.2006.08.029
- F. Adam and A. Iqbal, Micropor. Mesopor. Mater., 141, 119 (2011); https://doi.org/10.1016/j.micromeso.2010.10.037
- J. Handzlik, J. Ogonowski, J. Stoch and M. Mikolajczyk, Catal. Lett., 101, 65 (2005); https://doi.org/10.1007/s10562-005-3751-7
- R.S. Medeiros, J.G. Eon and L.G. Appel, Catal. Lett., 69, 79 (2000); https://doi.org/10.1023/A:1019093116966
- A. Christodoulakis, E. Heracleous, A. Lemonidou and S. Boghosian, J. Catal., 242, 16 (2006); https://doi.org/10.1016/j.jcat.2006.05.024
- M. Mathew, A.V. Biradar, S.B. Umbarkar and M.K. Dongare, Catal. Commun., 7, 394 (2006); https://doi.org/10.1016/j.catcom.2005.12.022
- F.F. Oloye and I.A. Ololade, Chemistry Africa, 1, 119 (2018); https://doi.org/10.1007/s42250-018-0016-6
- K. Jiratova, A. Spojakina, J. Balabanova, R. Palcheva, G. Tyuliev and Y. Karakirova, React. Kinet. Mech. Catal., 125, 901 (2018); https://doi.org/10.1007/s11144-018-1462-5
- K.C. Pratt, J.V. Sanders and V. Christov, J. Catal., 124, 416 (1990); https://doi.org/10.1016/0021-9517(90)90189-Q
- D. Hamon, M. Vrinat, M. Breysse, B. Durand, M. Jebrouni, M. Roubin, P. Magnoux and T. des Courières, Catal. Today, 10, 613 (1991); https://doi.org/10.1016/0920-5861(91)80042-8
- P. Topka, H. Balcar, J. Rathouský, N. Zilková, F. Verpoort and J. Èejka, Micropor. Mesopor. Mater., 96, 44 (2006); https://doi.org/10.1016/j.micromeso.2006.06.016
- J. Li, J. Liu, L. Ren, Q. Liu, Z. Zhao, Y. Chen, P. Zhu, Y. Wei, A. Duan and G. Jiang, J. Energy Chem., 23, 609 (2014); https://doi.org/10.1016/S2095-4956(14)60191-1
- J.A. Bergwerff, T. Visser, G. Leliveld, B.D. Rossenaar, K.P. de Jong and B.M. Weckhuysen, J. Am. Chem. Soc., 126, 14548 (2004); https://doi.org/10.1021/ja040107c
- S. Alehyen, M.E. Achouri and M. Taibi, J. Mater. Environ. Sci., 8, 1783 (2017).
- P.P. Nayak and A.K. Datta, Silicon, 13, 1209 (2021); https://doi.org/10.1007/s12633-020-00509-y
- Z.A. Supardi, Z. Nisa, D.H. Kusumawati, N.P. Putri, A. Taufiq and N. Hidayat, J. Phys: Conf. Ser., 1093, 012025 (2018); https://doi.org/10.1088/1755-1315/276/1/012046
- Munasir, Triwikantoro, M. Zainuri and Darminto, Mater. Sci. Pol., 33, 47 (2015); https://doi.org/10.1515/msp-2015-0008
- E.A. Paukshtis, M.A. Yaranova, I.S. Batueva and B.S. Bal'zhinimaev, Micropor. Mesopor. Mater., 288, 109582 (2019); https://doi.org/10.1016/j.micromeso.2019.109582
- V.K. Yadav and M.H. Fulekar, Mater. Today Proc., 18, 4351 (2019); https://doi.org/10.1016/j.matpr.2019.07.395
- G. Engelhardt and H. Jancke, Polym. Bull., 5, 577 (1981); https://doi.org/10.1007/BF00255295
- A. Kido, H. Iwamoto, N. Azuma and A. Ueno, Catal. Surv. Asia, 6, 45 (2002); https://doi.org/10.1023/A:1020541200687
- A.V. Biradar, S.B. Umbarkar and M.K. Dongare, Appl. Catal. A Gen., 285, 190 (2005); https://doi.org/10.1016/j.apcata.2005.02.028
- S.B. Lee, S.L. Kang, J.D. Lee and I.K. Hong, J. Ind. Eng. Chem., 5, 170 (1999).
References
F. Ghorbani, H. Younesi, Z. Mehraban, M.S. Çelik, A.A. Ghoreyshi and M. Anbia, J. Taiwan Inst. Chem. Eng., 44, 821 (2013); https://doi.org/10.1016/j.jtice.2013.01.019
S. Katara, S. Kabra, D. Goyal, R. Hada, A. Sharma and A. Rani, Mater. Today Proc., 42, 1409 (2021); https://doi.org/10.1016/j.matpr.2021.01.148
R. Prasad and M. Pandey, Bull. Chem. React. Eng. Catal., 7, 1 (2012); https://doi.org/10.9767/bcrec.7.1.1216.1-25
X. Chen, E. Hadde, S. Liu and Y. Peng, Miner. Eng., 113, 41 (2017); https://doi.org/10.1016/j.mineng.2017.08.001
C. Contado, Front Chem., 6, 48 (2015); https://doi.org/10.3389/fchem.2015.00048
M. Kot, R. Wojcieszak, E. Janiszewska, M. Pietrowski and M. Zieliñski, Materials, 14, 968 (2021); https://doi.org/10.3390/ma14040968
J.A.G. Coumans, E. Demiröz, N. Kosinov and E.J.M. Hensen, ChemCatChem, 14, e202200266 (2022); https://doi.org/10.1002/cctc.202200266
S. Faisal, P.K. Maity, Q. Zang, T.B. Samarakoon, R.L. Sourk and P.R. Hanson, ACS Comb. Sci., 18, 387 (2016); https://doi.org/10.1021/acscombsci.6b00041
K.R. Milleman, J.L. Milleman, J.E. Creeth, A. Butler and M.L. Bosma, J. Clin. Dent., 27, 7 (2016).
A. Ketov, V. Korotaev, L. Rudakova, I. Vaisman, L. Barbieri and I. Lancellotti, Int. J. Appl. Ceram. Technol., 18, 394 (2021); https://doi.org/10.1111/ijac.13654
P. Lu and Y.L. Hsieh, Powder Technol., 225, 149 (2012); https://doi.org/10.1016/j.powtec.2012.04.002
E. Phumnok, P. Khongprom and S. Ratanawilai, ACS Omega, 7, 8364 (2022); https://doi.org/10.1021/acsomega.1c05848
A.S. Dorcheh and M.H. Abbasi, J. Mater. Process. Technol., 199, 10 (2008); https://doi.org/10.1016/j.jmatprotec.2007.10.060
G. Rey, S.L. Vivod, S. Singla, T. Benyo, J. King, S.S. Chuang and A. Dhinojwala, ACS Appl. Mater. Interfaces, 13, 41084 (2021); https://doi.org/10.1021/acsami.1c10879
A. Farsad, A. Ahmadpour, T.R. Bastami and A. Yaqubzadeh, J. Sol-Gel Sci. Technol., 84, 246 (2017); https://doi.org/10.1007/s10971-017-4498-5
J.P. Nayak and J. Bera, Trans. Indian Ceram. Soc., 68, 91 (2009); https://doi.org/10.1080/0371750X.2009.11082163
X. Ma, B. Zhou, W. Gao, Y. Qu, L. Wang, Z. Wang and Y. Zhu, Powder Technol., 217, 497 (2012); https://doi.org/10.1016/j.powtec.2011.11.009
U. Ghani, S. Hussain, A. Ali, V. Tirth, A. Algahtani, A. Zaman, M. Mushtaq, K. Althubeiti and M. Aljohani, ACS Omega, 7, 6113 (2022); https://doi.org/10.1021/acsomega.1c06553
H.I. El Shimi, N.K. Attia, El G.I. Diwani and El S.T. Sheltawy, Int. J. Energy Res., 40, 1743 (2016); https://doi.org/10.1002/er.3546
Y. Yang, P. Zhang, J. Jiang, Y. Dai, M. Wu, Y. Pan and L. Ni, J. Sol-Gel Sci. Technol., 87, 408 (2018); https://doi.org/10.1007/s10971-018-4733-8
M. Yoldi, E.G. Fuentes-Ordoñez, S.A. Korili and A. Gil, Micropor. Mesopor. Mater., 287, 183 (2019); https://doi.org/10.1016/j.micromeso.2019.06.009
M. Kasai, Y. Kobayashi, M. Togo and A. Nakahira, Mater. Today Proc., 16, 232 (2019); https://doi.org/10.1016/j.matpr.2019.05.247
S.K. Malpani, D. Goyal, S. Katara and A. Rani, Chem. Pap., 75, 3017 (2021); https://doi.org/10.1007/s11696-020-01501-x
D. Jain, C. Khatri and A. Rani, Fuel, 90, 2083 (2011); https://doi.org/10.1016/j.fuel.2010.09.025
I. Majchrzak-Kucêba, J. Therm. Anal. Calorim., 107, 911 (2012); https://doi.org/10.1007/s10973-011-1908-8
J.A. Costa, V.H. Sarmento, L.P. Romão and C.M. Paranhos, Environ. Sci. Pollut. Res. Int., 26, 25476 (2019); https://doi.org/10.1007/s11356-019-05852-1
J.-M. Brégeault, M. Vennat, Laurent Salles, J.-Y. Piquemal, Y. Mahha, E. Briot, P.C. Bakala, A. Atlamsani and R. Thouvenot, J. Mol. Catal. Chem., 250, 177 (2006); https://doi.org/10.1016/j.molcata.2006.01.027
H.H. Kung, Transition Metal Oxides: Surface Chemistry and Catalysis, Elsevier (1989).
G. Centi, F. Cavani and F. Trifirò, Selective Oxidation by Heterogeneous Catalysis, Kluwer Academic/Plenum Publishers: New York, vol. 26 (2001).
A. Gervasini, L. Wahba, M.D. Finol and J.F. Lamonier, Mater. Sci. Appl., 3, 195 (2012); https://doi.org/10.4236/msa.2012.34030
S.V. Kotov and E. Balbolov, J. Mol. Catal. Chem., 176, 41 (2001); https://doi.org/10.1016/S1381-1169(01)00244-8
J.A. Melero, J. Iglesias, J.M. Arsuaga, J. Sainz-Pardo, P. De Frutos and S. Blázquez, Appl. Catal. A Gen., 331, 84 (2007); https://doi.org/10.1016/j.apcata.2007.07.031
Z. Song, N. Mimura, J.J. Bravo-Suárez, T. Akita, S. Tsubota and S.T. Oyama, Appl. Catal. A Gen., 316, 142 (2007); https://doi.org/10.1016/j.apcata.2006.08.029
F. Adam and A. Iqbal, Micropor. Mesopor. Mater., 141, 119 (2011); https://doi.org/10.1016/j.micromeso.2010.10.037
J. Handzlik, J. Ogonowski, J. Stoch and M. Mikolajczyk, Catal. Lett., 101, 65 (2005); https://doi.org/10.1007/s10562-005-3751-7
R.S. Medeiros, J.G. Eon and L.G. Appel, Catal. Lett., 69, 79 (2000); https://doi.org/10.1023/A:1019093116966
A. Christodoulakis, E. Heracleous, A. Lemonidou and S. Boghosian, J. Catal., 242, 16 (2006); https://doi.org/10.1016/j.jcat.2006.05.024
M. Mathew, A.V. Biradar, S.B. Umbarkar and M.K. Dongare, Catal. Commun., 7, 394 (2006); https://doi.org/10.1016/j.catcom.2005.12.022
F.F. Oloye and I.A. Ololade, Chemistry Africa, 1, 119 (2018); https://doi.org/10.1007/s42250-018-0016-6
K. Jiratova, A. Spojakina, J. Balabanova, R. Palcheva, G. Tyuliev and Y. Karakirova, React. Kinet. Mech. Catal., 125, 901 (2018); https://doi.org/10.1007/s11144-018-1462-5
K.C. Pratt, J.V. Sanders and V. Christov, J. Catal., 124, 416 (1990); https://doi.org/10.1016/0021-9517(90)90189-Q
D. Hamon, M. Vrinat, M. Breysse, B. Durand, M. Jebrouni, M. Roubin, P. Magnoux and T. des Courières, Catal. Today, 10, 613 (1991); https://doi.org/10.1016/0920-5861(91)80042-8
P. Topka, H. Balcar, J. Rathouský, N. Zilková, F. Verpoort and J. Èejka, Micropor. Mesopor. Mater., 96, 44 (2006); https://doi.org/10.1016/j.micromeso.2006.06.016
J. Li, J. Liu, L. Ren, Q. Liu, Z. Zhao, Y. Chen, P. Zhu, Y. Wei, A. Duan and G. Jiang, J. Energy Chem., 23, 609 (2014); https://doi.org/10.1016/S2095-4956(14)60191-1
J.A. Bergwerff, T. Visser, G. Leliveld, B.D. Rossenaar, K.P. de Jong and B.M. Weckhuysen, J. Am. Chem. Soc., 126, 14548 (2004); https://doi.org/10.1021/ja040107c
S. Alehyen, M.E. Achouri and M. Taibi, J. Mater. Environ. Sci., 8, 1783 (2017).
P.P. Nayak and A.K. Datta, Silicon, 13, 1209 (2021); https://doi.org/10.1007/s12633-020-00509-y
Z.A. Supardi, Z. Nisa, D.H. Kusumawati, N.P. Putri, A. Taufiq and N. Hidayat, J. Phys: Conf. Ser., 1093, 012025 (2018); https://doi.org/10.1088/1755-1315/276/1/012046
Munasir, Triwikantoro, M. Zainuri and Darminto, Mater. Sci. Pol., 33, 47 (2015); https://doi.org/10.1515/msp-2015-0008
E.A. Paukshtis, M.A. Yaranova, I.S. Batueva and B.S. Bal'zhinimaev, Micropor. Mesopor. Mater., 288, 109582 (2019); https://doi.org/10.1016/j.micromeso.2019.109582
V.K. Yadav and M.H. Fulekar, Mater. Today Proc., 18, 4351 (2019); https://doi.org/10.1016/j.matpr.2019.07.395
G. Engelhardt and H. Jancke, Polym. Bull., 5, 577 (1981); https://doi.org/10.1007/BF00255295
A. Kido, H. Iwamoto, N. Azuma and A. Ueno, Catal. Surv. Asia, 6, 45 (2002); https://doi.org/10.1023/A:1020541200687
A.V. Biradar, S.B. Umbarkar and M.K. Dongare, Appl. Catal. A Gen., 285, 190 (2005); https://doi.org/10.1016/j.apcata.2005.02.028
S.B. Lee, S.L. Kang, J.D. Lee and I.K. Hong, J. Ind. Eng. Chem., 5, 170 (1999).