Copyright (c) 2016 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Trifluoromethylation of Disubstituted Morpholines by Metal-Free Visible Light Photoredox Catalysis
Asian Journal of Chemistry,
Vol. 28 No. 10 (2016): Vol 28 Issue 10
Abstract
A mild and efficient one-pot visible light-induced method has been developed for the trifluoromethylation of disubstituted morpholines. This method includes synthesis of substituted 4-tosyl-5-[(trifluoromethyl)thio]morpholine 4(a-l) from tosylaziridine 1(a-l) and oxiran-2-thiol (2) in presence of eosin Y as an organophotoredox catalyst at room temperature under aerobic condition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.D. Chambers, Fluorine in Organic Chemistry, Wiley, New York (1973).
- C.D. Murphy, C. Schaffrath and D. O'Hagan, Chemosphere, 52, 455 (2003); doi:10.1016/S0045-6535(03)00191-7.
- A. Vulpetti and C. Dalvit, Drug Discov. Today, 17, 890 (2012); doi:10.1016/j.drudis.2012.03.014.
- K. Müller, V. Faeh and F. Diederich, Science, 317, 1881 (2007); doi:10.1126/science.1131943.
- S. Purser, P.R. Moore, S. Swallow and V. Gouverneur, Chem. Soc. Rev., 37, 320 (2008); doi:10.1039/B610213C.
- W.K. Hagmann, J. Med. Chem., 51, 4359 (2008); doi:10.1021/jm800219f.
- R. Koller, K. Stanek, D. Stolz, R. Aardoom, K. Niedermann and A. Togni, Angew. Chem. Int. Ed., 48, 4332 (2009); doi:10.1002/anie.200900974.
- D.A. Nagib, M.E. Scott and D.W.C. MacMillan, J. Am. Chem. Soc., 131, 10875 (2009); doi:10.1021/ja9053338.
- W. Krämer, U. Schirmer, P. Jeschke and M. Witschel, Modern Crop Protection Compounds, Wiley & Sons, Weinheim, edn 2, Vol. 1-3 (2011).
- M. Pagliaro and R. Ciriminna, J. Mater. Chem., 15, 4981 (2005); doi:10.1039/b507583c.
- P.J. Murray, M. Kranz, M. Ladlow, S. Taylor, F. Berst, A.B. Holmes, K.N. Keavey, A. Jaxa-Chamiec, P.W. Seale, P. Stead, R.J. Upton, S.L. Croft, W. Clegg and M.R.J. Elsegood, Bioorg. Med. Chem. Lett., 11, 773 (2001); doi:10.1016/S0960-894X(01)00049-X.
- D.T. Bong, T.D. Clark, J.R. Granja and M.R. Ghadiri, Angew. Chem. Int. Ed., 40, 988 (2001); doi:10.1002/1521-3773(20010316)40:6<988::AID-ANIE9880>3.0.CO;2-N.
- E.R. Jarvo and S.J. Miller, Tetrahedron, 58, 2481 (2002); doi:10.1016/S0040-4020(02)00122-9.
- R. Wijtmans, M.K.S. Vink, H.E. Schoemaker, F.L. van Delft, R.H. Blaauw and F.P.J.T. Rutjes, Synthesis, 641 (2004); doi:10.1055/s-2004-816003.
- E.H.F. Wong, M.S. Sonders, S.G. Amara, P.M. Tinholt, M.F.P. Piercey, W.P. Hoffmann, D.K. Hyslop, S. Franklin, R.D. Porsolt, A. Bonsignori, N. Carfagna and R.A. McArthur, Biol. Psychiatry, 47, 818 (2000); doi:10.1016/S0006-3223(99)00291-7.
- C. Guilloneau, Y. Charton, Y. Ginot, M. Fouquier-d’Herouel, M. Bertrand, B. Lockhart, P. Lestage and S. Goldstein, Eur. J. Med. Chem., 38, 1 (2003);
- doi:10.1016/S0223-5234(02)01424-1.
- J.A.H. Lainton, M.C. Allen, M. Burton, S. Cameron, T.R.G. Edwards, G. Harden, R. Hogg, W. Leung, S. Miller, S.S. Morrish, S.M. Rooke and B. Wendt, J. Comb. Chem., 5, 400 (2003); doi:10.1021/cc020052f.
- D. Enders, O. Meyer, G. Raabe and J. Runsink, Synthesis, 66 (1994); doi:10.1055/s-1994-25407.
- R. Dave and N.A. Sasaki, Org. Lett., 6, 15 (2004); doi:10.1021/ol035998s.
- P. Panneerselvam, R.R. Nair, G. Vijayalakshmi, E.H. Subramanian and S.K. Sridhar, Eur. J. Med. Chem., 40, 225 (2005); doi:10.1016/j.ejmech.2004.09.003.
- V. Raparti, T. Chitre, K. Bothara, V. Kumar, S. Dangre, C. Khachane, S. Gore and B. Deshmane, Eur. J. Med. Chem., 44, 3954 (2009); doi:10.1016/j.ejmech.2009.04.023.
- N.S. Lewis, Science, 315, 798 (2007); doi:10.1126/science.1137014.
- O. Morton, Nature, 443, 19 (2006); doi:10.1038/443019a.
- D.G. Nocera, Daedalus, 135, 112 (2006); doi:10.1162/daed.2006.135.4.112.
- D. Mandler and I. Willner, J. Am. Chem. Soc., 106, 5352 (1984); doi:10.1021/ja00330a053.
- O. Ishitani, S. Yanagida, S. Takamuku and C. Pac, J. Org. Chem., 52, 2790 (1987); doi:10.1021/jo00389a027.
- D.A. Nicewicz and T.M. Nguyen, ACS Catal., 4, 355 (2014); doi:10.1021/cs400956a.
- J. Xie, H. Jin, P. Xu and C. Zhu, Tetrahedron Lett., 55, 36 (2014); doi:10.1016/j.tetlet.2013.10.090.
- X. Lang, X. Chen and J. Zhao, Chem. Soc. Rev., 43, 473 (2014); doi:10.1039/C3CS60188A.
- J. Hu, J. Wang, T.H. Nguyen and N. Zheng, Beilstein J. Org. Chem., 9, 1977 (2013); doi:10.3762/bjoc.9.234.
- D. Ravelli, M. Fagnoni and A. Albini, Chem. Soc. Rev., 42, 97 (2013); doi:10.1039/C2CS35250H.
- T.P. Yoon, M.A. Ischay and J.N. Du, Nat. Chem., 2, 527 (2010); doi:10.1038/nchem.687.
- V. Srivastava, P.K. Singh and P.P. Singh, Croat. Chem. Acta, 88, 227 (2015); doi:10.5562/cca2632.
- V. Srivastava, P.K. Singh and P.P. Singh, Croat. Chem. Acta, 87, 91 (2014); doi:10.5562/cca2372.
- V. Srivastava, P.K. Singh and P.P. Singh, Chem. Heterocycl. Comp., 50, 573 (2014); doi:10.1007/s10593-014-1509-0.
- V. Srivastava, P.K. Singh and P.P. Singh, Croat. Chem. Acta, 88, 59 (2015); doi:10.5562/cca2520.
- N.J.W. Straathof, H.P.L. Gemoets, X. Wang, J.C. Schouten, V. Hessel and T. Noel, ChemSusChem, 7, 1612 (2014); doi:10.1002/cssc.201301282.
- N. Straathof, D. Osch, A. Schouten, X. Wang, J. Schouten, V. Hessel and T. Noël, J. Flow Chem., 4, 12 (2015); doi:10.1556/JFC-D-13-00032.
References
R.D. Chambers, Fluorine in Organic Chemistry, Wiley, New York (1973).
C.D. Murphy, C. Schaffrath and D. O'Hagan, Chemosphere, 52, 455 (2003); doi:10.1016/S0045-6535(03)00191-7.
A. Vulpetti and C. Dalvit, Drug Discov. Today, 17, 890 (2012); doi:10.1016/j.drudis.2012.03.014.
K. Müller, V. Faeh and F. Diederich, Science, 317, 1881 (2007); doi:10.1126/science.1131943.
S. Purser, P.R. Moore, S. Swallow and V. Gouverneur, Chem. Soc. Rev., 37, 320 (2008); doi:10.1039/B610213C.
W.K. Hagmann, J. Med. Chem., 51, 4359 (2008); doi:10.1021/jm800219f.
R. Koller, K. Stanek, D. Stolz, R. Aardoom, K. Niedermann and A. Togni, Angew. Chem. Int. Ed., 48, 4332 (2009); doi:10.1002/anie.200900974.
D.A. Nagib, M.E. Scott and D.W.C. MacMillan, J. Am. Chem. Soc., 131, 10875 (2009); doi:10.1021/ja9053338.
W. Krämer, U. Schirmer, P. Jeschke and M. Witschel, Modern Crop Protection Compounds, Wiley & Sons, Weinheim, edn 2, Vol. 1-3 (2011).
M. Pagliaro and R. Ciriminna, J. Mater. Chem., 15, 4981 (2005); doi:10.1039/b507583c.
P.J. Murray, M. Kranz, M. Ladlow, S. Taylor, F. Berst, A.B. Holmes, K.N. Keavey, A. Jaxa-Chamiec, P.W. Seale, P. Stead, R.J. Upton, S.L. Croft, W. Clegg and M.R.J. Elsegood, Bioorg. Med. Chem. Lett., 11, 773 (2001); doi:10.1016/S0960-894X(01)00049-X.
D.T. Bong, T.D. Clark, J.R. Granja and M.R. Ghadiri, Angew. Chem. Int. Ed., 40, 988 (2001); doi:10.1002/1521-3773(20010316)40:6<988::AID-ANIE9880>3.0.CO;2-N.
E.R. Jarvo and S.J. Miller, Tetrahedron, 58, 2481 (2002); doi:10.1016/S0040-4020(02)00122-9.
R. Wijtmans, M.K.S. Vink, H.E. Schoemaker, F.L. van Delft, R.H. Blaauw and F.P.J.T. Rutjes, Synthesis, 641 (2004); doi:10.1055/s-2004-816003.
E.H.F. Wong, M.S. Sonders, S.G. Amara, P.M. Tinholt, M.F.P. Piercey, W.P. Hoffmann, D.K. Hyslop, S. Franklin, R.D. Porsolt, A. Bonsignori, N. Carfagna and R.A. McArthur, Biol. Psychiatry, 47, 818 (2000); doi:10.1016/S0006-3223(99)00291-7.
C. Guilloneau, Y. Charton, Y. Ginot, M. Fouquier-d’Herouel, M. Bertrand, B. Lockhart, P. Lestage and S. Goldstein, Eur. J. Med. Chem., 38, 1 (2003);
doi:10.1016/S0223-5234(02)01424-1.
J.A.H. Lainton, M.C. Allen, M. Burton, S. Cameron, T.R.G. Edwards, G. Harden, R. Hogg, W. Leung, S. Miller, S.S. Morrish, S.M. Rooke and B. Wendt, J. Comb. Chem., 5, 400 (2003); doi:10.1021/cc020052f.
D. Enders, O. Meyer, G. Raabe and J. Runsink, Synthesis, 66 (1994); doi:10.1055/s-1994-25407.
R. Dave and N.A. Sasaki, Org. Lett., 6, 15 (2004); doi:10.1021/ol035998s.
P. Panneerselvam, R.R. Nair, G. Vijayalakshmi, E.H. Subramanian and S.K. Sridhar, Eur. J. Med. Chem., 40, 225 (2005); doi:10.1016/j.ejmech.2004.09.003.
V. Raparti, T. Chitre, K. Bothara, V. Kumar, S. Dangre, C. Khachane, S. Gore and B. Deshmane, Eur. J. Med. Chem., 44, 3954 (2009); doi:10.1016/j.ejmech.2009.04.023.
N.S. Lewis, Science, 315, 798 (2007); doi:10.1126/science.1137014.
O. Morton, Nature, 443, 19 (2006); doi:10.1038/443019a.
D.G. Nocera, Daedalus, 135, 112 (2006); doi:10.1162/daed.2006.135.4.112.
D. Mandler and I. Willner, J. Am. Chem. Soc., 106, 5352 (1984); doi:10.1021/ja00330a053.
O. Ishitani, S. Yanagida, S. Takamuku and C. Pac, J. Org. Chem., 52, 2790 (1987); doi:10.1021/jo00389a027.
D.A. Nicewicz and T.M. Nguyen, ACS Catal., 4, 355 (2014); doi:10.1021/cs400956a.
J. Xie, H. Jin, P. Xu and C. Zhu, Tetrahedron Lett., 55, 36 (2014); doi:10.1016/j.tetlet.2013.10.090.
X. Lang, X. Chen and J. Zhao, Chem. Soc. Rev., 43, 473 (2014); doi:10.1039/C3CS60188A.
J. Hu, J. Wang, T.H. Nguyen and N. Zheng, Beilstein J. Org. Chem., 9, 1977 (2013); doi:10.3762/bjoc.9.234.
D. Ravelli, M. Fagnoni and A. Albini, Chem. Soc. Rev., 42, 97 (2013); doi:10.1039/C2CS35250H.
T.P. Yoon, M.A. Ischay and J.N. Du, Nat. Chem., 2, 527 (2010); doi:10.1038/nchem.687.
V. Srivastava, P.K. Singh and P.P. Singh, Croat. Chem. Acta, 88, 227 (2015); doi:10.5562/cca2632.
V. Srivastava, P.K. Singh and P.P. Singh, Croat. Chem. Acta, 87, 91 (2014); doi:10.5562/cca2372.
V. Srivastava, P.K. Singh and P.P. Singh, Chem. Heterocycl. Comp., 50, 573 (2014); doi:10.1007/s10593-014-1509-0.
V. Srivastava, P.K. Singh and P.P. Singh, Croat. Chem. Acta, 88, 59 (2015); doi:10.5562/cca2520.
N.J.W. Straathof, H.P.L. Gemoets, X. Wang, J.C. Schouten, V. Hessel and T. Noel, ChemSusChem, 7, 1612 (2014); doi:10.1002/cssc.201301282.
N. Straathof, D. Osch, A. Schouten, X. Wang, J. Schouten, V. Hessel and T. Noël, J. Flow Chem., 4, 12 (2015); doi:10.1556/JFC-D-13-00032.