This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of SnO2/BNNTs Nanocomposite for Ethanol Vapour Sensing at Room Temperature
Corresponding Author(s) : H. Sharma
Asian Journal of Chemistry,
Vol. 35 No. 6 (2023): Vol 35 Issue 6, 2023
Abstract
Ethanol vapour sensors based on tin oxide (SnO2) nanoparticles onto boron nitride nanotubes (BNNTs) have been synthesized as a promising solution for detecting ethanol vapour in air. The existence of encapsulation of BNNTs over SnO2 i.e. SnO2/BNNT was confirmed by AFM, FTIR and current-voltage characteristics. Activation energy of sensor has been investigated to study the nature of synthesized material. Ethanol sensitivity, responsiveness and response-recovery durations of the SnO2-BNNTs sensor, as well as other sensing features, was examined by exposure to various ethanol vapour concentrations starting from 70 to 500 mL/min at room temperature with increasing rate of pressure value at room temperature. The SnO2 nanoparticles have a high sensitivity to ethanol vapour, while BNNTs enhance the sensing performance and stability of the sensor. This is achieved by combining BNNT (large surface area) and SnO2 (good electrical conductivity). The ethanol vapour sensor based on SnO2-BNNTs has been shown to have a good response and recovery time around 1 min and 2 s, respectively. With its high sensitivity of ~110 and stability, it is an excellent option for practical applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Sharma, A. Sharma and J. Myung, Sens. Actuators B Chem., 331, 129464 (2021); https://doi.org/10.1016/j.snb.2021.129464
- M. Yoosefian, N. Etminan, M.Z. Moghani, S. Mirzaei and S. Abbasi, Superlatt. Microstruct., 98, 325 (2016); https://doi.org/10.1016/j.spmi.2016.08.049
- R.C. Singh, N. Kohli, M.P. Singh and O. Singh, Bull. Mater. Sci., 33, 575 (2010); https://doi.org/10.1007/s12034-010-0088-7
- W. Tian, Y. Wang, Y. Zhang, J. Cao and R.F. Guan, ACS Appl. Nano Mater., 4, 6316 (2021); https://doi.org/10.1021/acsanm.1c01165
- N.A. Pandit and T. Ahmad, Molecules, 27, 7038 (2022); https://doi.org/10.3390/molecules27207038
- S. Tyagi, M. Chaudhary, A.K. Ambedkar, K. Sharma, Y.K. Gautam and B.P. Singh, Sens. Diagn., 1, 106 (2022); https://doi.org/10.1039/D1SD00034A
- K.B. Dhungana and R. Pati, Sensors, 14, 17655 (2014); https://doi.org/10.3390/s140917655
- T. Tharsika, M. Thanihaichelvan, A.S.M.A. Haseeb and S.A. Akbar, Front. Mater., 6, 122 (2019); https://doi.org/10.3389/fmats.2019.00122
- D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang and C. Zhi, ACS Nano, 4, 2979 (2010); https://doi.org/10.1021/nn1006495
- D. Köken, M.Sc. Thesis, Synthesis and Optimization of Boron Nitride Nanotubes for Stable Aqueous Dispersions, Sabanci University, Istanbul, Turkey (2016).
- C.H. Lee, S. Bhandari, B. Tiwari, N. Yapici, D. Zhang and Y.K. Yap, Molecules, 21, 922 (2016); https://doi.org/10.3390/molecules21070922
- W. Meng, Y. Huang, Y. Fu, Z. Wang and C. Zhi, J. Mater. Chem. C Mater. Opt. Electron. Devices, 2, 10049 (2014); https://doi.org/10.1039/C4TC01998A
- D. Zhang, N. Yapici, R. Oakley and Y.K. Yap, J. Mater. Res., 37, 4605 (2022); https://doi.org/10.1557/s43578-022-00737-5
- H. Du, X. Li, P. Yao, J. Wang, Y. Sun and L. Dong, Nanomaterials, 8, 509 (2018); https://doi.org/10.3390/nano8070509
- S.B. Kondawar, A.M. More, H.J. Sharma and S.P. Dongre, J. Mater. Nanosci., 4, 13 (2017).
- H.J. Sharma, D.V. Jamkar and S.B. Kondawar, Procedia Mater. Sci., 10, 186 (2015); https://doi.org/10.1016/j.mspro.2015.06.040
- H.J. Sharma, M.A. Salorkar and S.B. Kondawar, Adv. Mater. Process., 2, 61 (2017); https://doi.org/10.5185/amp.2017/114
- R. Haubner, M. Wilhelm, R. Weissenbacher and B. Lux, Boron Nitrides-Properties, Synthesis and Applications, Springer: Berlin Heidelberg, pp. 1-45 (2002).
- M.J. Rand and J.F. Roberts, J. Electrochem. Soc., 115, 423 (1968); https://doi.org/10.1149/1.2411238
- S.S. Niavol and H.M. Moghaddam, J. Mater. Sci. Mater. Electron., 32, 6550 (2021); https://doi.org/10.1007/s10854-021-05372-0
- Y.V. Kaneti, J. Yue, J. Moriceau, C. Chen, M. Liu, Y. Yuan, X. Jiang and A. Yu, Sens. Actuators B Chem., 219, 83 (2015); https://doi.org/10.1016/j.snb.2015.04.136
- I. Gawri, R. Ridhi, K.P. Singh and S.K. Tripathi, Mater. Res. Express, 5, 025303 (2018); https://doi.org/10.1088/2053-1591/aaa9f1
- L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang and S. Wu, Sens. Actuators B Chem., 120, 568 (2007); https://doi.org/10.1016/j.snb.2006.03.009
- M. Riordan and L. Hoddeson, Res. Sec. Sci. Teach., 34, 73 (2003); https://doi.org/10.1109/6.591664
- N.C. Joshi, Sep. Sci. Technol., 57, 2420 (2022); https://doi.org/10.1080/01496395.2022.2069042
References
B. Sharma, A. Sharma and J. Myung, Sens. Actuators B Chem., 331, 129464 (2021); https://doi.org/10.1016/j.snb.2021.129464
M. Yoosefian, N. Etminan, M.Z. Moghani, S. Mirzaei and S. Abbasi, Superlatt. Microstruct., 98, 325 (2016); https://doi.org/10.1016/j.spmi.2016.08.049
R.C. Singh, N. Kohli, M.P. Singh and O. Singh, Bull. Mater. Sci., 33, 575 (2010); https://doi.org/10.1007/s12034-010-0088-7
W. Tian, Y. Wang, Y. Zhang, J. Cao and R.F. Guan, ACS Appl. Nano Mater., 4, 6316 (2021); https://doi.org/10.1021/acsanm.1c01165
N.A. Pandit and T. Ahmad, Molecules, 27, 7038 (2022); https://doi.org/10.3390/molecules27207038
S. Tyagi, M. Chaudhary, A.K. Ambedkar, K. Sharma, Y.K. Gautam and B.P. Singh, Sens. Diagn., 1, 106 (2022); https://doi.org/10.1039/D1SD00034A
K.B. Dhungana and R. Pati, Sensors, 14, 17655 (2014); https://doi.org/10.3390/s140917655
T. Tharsika, M. Thanihaichelvan, A.S.M.A. Haseeb and S.A. Akbar, Front. Mater., 6, 122 (2019); https://doi.org/10.3389/fmats.2019.00122
D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. Tang and C. Zhi, ACS Nano, 4, 2979 (2010); https://doi.org/10.1021/nn1006495
D. Köken, M.Sc. Thesis, Synthesis and Optimization of Boron Nitride Nanotubes for Stable Aqueous Dispersions, Sabanci University, Istanbul, Turkey (2016).
C.H. Lee, S. Bhandari, B. Tiwari, N. Yapici, D. Zhang and Y.K. Yap, Molecules, 21, 922 (2016); https://doi.org/10.3390/molecules21070922
W. Meng, Y. Huang, Y. Fu, Z. Wang and C. Zhi, J. Mater. Chem. C Mater. Opt. Electron. Devices, 2, 10049 (2014); https://doi.org/10.1039/C4TC01998A
D. Zhang, N. Yapici, R. Oakley and Y.K. Yap, J. Mater. Res., 37, 4605 (2022); https://doi.org/10.1557/s43578-022-00737-5
H. Du, X. Li, P. Yao, J. Wang, Y. Sun and L. Dong, Nanomaterials, 8, 509 (2018); https://doi.org/10.3390/nano8070509
S.B. Kondawar, A.M. More, H.J. Sharma and S.P. Dongre, J. Mater. Nanosci., 4, 13 (2017).
H.J. Sharma, D.V. Jamkar and S.B. Kondawar, Procedia Mater. Sci., 10, 186 (2015); https://doi.org/10.1016/j.mspro.2015.06.040
H.J. Sharma, M.A. Salorkar and S.B. Kondawar, Adv. Mater. Process., 2, 61 (2017); https://doi.org/10.5185/amp.2017/114
R. Haubner, M. Wilhelm, R. Weissenbacher and B. Lux, Boron Nitrides-Properties, Synthesis and Applications, Springer: Berlin Heidelberg, pp. 1-45 (2002).
M.J. Rand and J.F. Roberts, J. Electrochem. Soc., 115, 423 (1968); https://doi.org/10.1149/1.2411238
S.S. Niavol and H.M. Moghaddam, J. Mater. Sci. Mater. Electron., 32, 6550 (2021); https://doi.org/10.1007/s10854-021-05372-0
Y.V. Kaneti, J. Yue, J. Moriceau, C. Chen, M. Liu, Y. Yuan, X. Jiang and A. Yu, Sens. Actuators B Chem., 219, 83 (2015); https://doi.org/10.1016/j.snb.2015.04.136
I. Gawri, R. Ridhi, K.P. Singh and S.K. Tripathi, Mater. Res. Express, 5, 025303 (2018); https://doi.org/10.1088/2053-1591/aaa9f1
L. Geng, Y. Zhao, X. Huang, S. Wang, S. Zhang and S. Wu, Sens. Actuators B Chem., 120, 568 (2007); https://doi.org/10.1016/j.snb.2006.03.009
M. Riordan and L. Hoddeson, Res. Sec. Sci. Teach., 34, 73 (2003); https://doi.org/10.1109/6.591664
N.C. Joshi, Sep. Sci. Technol., 57, 2420 (2022); https://doi.org/10.1080/01496395.2022.2069042