This work is licensed under a Creative Commons Attribution 4.0 International License.
Virtual Screening, DNA Strapping and Antimicrobial Investigation of Mixed Ligand Transition Metal Complexes
Corresponding Author(s) : Natarajan Raman
Asian Journal of Chemistry,
Vol. 35 No. 6 (2023): Vol 35 Issue 6, 2023
Abstract
To obtain the highest level of biological effectiveness, four transition metal viz., Cu(II), Zn(II), Co(II) and Ni(II) complexes viz. were synthesized using Schiff base obtained by the condensation reaction of o-phenylene diamine, 4-chlorobenzaldehyde and a co-ligand (malonic acid). Elemental analysis and other spectroscopic methods were used to identify them. All the synthesized metal(II) complexes have a square planar geometry, according to the physico-chemical analyses. The antibacterial properties of the ligand and its metal(II) complexes on various microorganisms were also studied. SWISS-ADME online freeware was used to screen these compounds for drug-like action and pharmacokinetic research. Furthermore, UV absorption analyses and viscosity titrations were employed to test the efficacy of the synthesised metal complexes as DNA nucleases, and the results are consistent with an intercalative binding mechanism. The outcomes of molecular docking research on the COVID-19 virus and cancer DNA are fascinating.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.J. Kelloff, Adv. Cancer Res., 78, 199 (1999); https://doi.org/10.1016/S0065-230X(08)61026-X
- S. Jana, R.C. Santra, A. Frontera, M.G.B. Drew, J. Ortega-Castro, D. Fernandez, S. Das and S. Chattopadhyay, ChemistrySelect, 1, 448 (2016); https://doi.org/10.1002/slct.201500018
- C.G. Hartinger and P.J. Dyson, Chem. Soc. Rev., 38, 391 (2009); https://doi.org/10.1039/B707077M
- G.S. Smith and B. Therrien, Dalton Trans., 40, 10793 (2011); https://doi.org/10.1039/c1dt11007a
- N.P.E. Barry and P.J. Sadler, Chem. Commun., 49, 5106 (2013); https://doi.org/10.1039/c3cc41143e
- P. Govender, B. Therrien and G.S. Smith, Eur. J. Inorg. Chem., 2853 (2012); https://doi.org/10.1002/ejic.201200161
- U. Jungwirth, C.R. Kowol, B.K. Keppler, C.G. Hartinger, W. Berger and P. Heffeter, Antioxid. Redox Signal., 15, 1085 (2011); https://doi.org/10.1089/ars.2010.3663
- C.H. Wang, W.C. Shih, H.C. Chang, Y.Y. Kuo, W.C. Hung, T.G. Ong and W.S. Li, J. Med. Chem., 54, 5245 (2011); https://doi.org/10.1021/jm101096x
- S. Kundu, A.K. Pramanik, A.S. Mondal and T.K. Mondal, J. Mol. Struct., 1116, 1 (2016); https://doi.org/10.1016/j.molstruc.2016.03.013
- K. Buldurun, N. Turan, A. Savci and N. Çolak, J. Saudi Chem. Soc., 23, 205 (2019); https://doi.org/10.1016/j.jscs.2018.06.002
- A. Gölcü, M. Tümer, H. Demirelli and R.A. Wheatley, Inorg. Chim. Acta, 358, 1785 (2005); https://doi.org/10.1016/j.ica.2004.11.026
- P. Krishnamoorthy, P. Sathyadevi, K. Senthilkumar, P.T. Muthiah, R. Ramesh and N. Dharmaraj, Inorg. Chem. Commun., 14, 1318 (2011); https://doi.org/10.1016/j.inoche.2011.05.004
- R.V. Sakthivel, P. Sankudevan, P. Vennila, G. Venkatesh, S. Kaya and G. Serdaroðlu, J. Mol. Struct., 1233, 130097 (2021); https://doi.org/10.1016/j.molstruc.2021.130097
- A.K. Patra, M. Nethaji and A.R. Chakravarty, J. Inorg. Biochem., 101, 233 (2007); https://doi.org/10.1016/j.jinorgbio.2006.09.018
- A. Silvestri, G. Barone, G. Ruisi, M.T. Lo Giudice and S.J. Tumminello, J. Inorg. Biochem., 98, 589 (2004); https://doi.org/10.1016/j.jinorgbio.2004.01.010
- M. Navarro, E.J. Cisneros-Fajardo, A. Sierralta, M. Fernandez-Mestre, P. Silva, D. Arrieche and E. Marchan, J. Biol. Inorg. Chem., 8, 401 (2003); https://doi.org/10.1007/s00775-002-0427-2
- S.N. Pandeya, D. Sriram, G. Nath and E. De Clercq, Pharm. Acta Helv., 74, 11 (1999); https://doi.org/10.1016/S0031-6865(99)00010-2
- S.N. Pandeya, D. Sriram, G. Nath and E. de Clercq, Arzneimittelforschung, 50, 55 (2000); https://doi.org/10.1055/s-0031-1300164
- W.M. Singh and B.C. Dash, Pesticides, 22, 33 (1988).
- J.L. Kelley, J.A. Linn, D.D. Bankston, C.J. Burchall, F.E. Soroko and B.R. Cooper, J. Med. Chem., 38, 3676 (1995); https://doi.org/10.1021/jm00018a029
- G. Turan-Zitouni, Z.A. Kaplancikli, A. Özdemir, P. Chevallet, H.B. Kandilci and B. Gümüsel, Arch. Pharm., 340, 586 (2007); https://doi.org/10.1002/ardp.200700134
- M.T.H. Tarafder, A. Kasbollah, N. Saravanan, K.A. Crouse, A.M. Ali and K. Tin Oo, J. Biochem. Mol. Biol. Biophys., 6, 85 (2002); https://doi.org/10.1080/10258140290027207
- S.T. Chew, K.M. Lo, S.K. Lee, M.P. Heng, W.Y. Teoh, K.S. Sim and K.W. Tan, Eur. J. Med. Chem., 76, 397 (2014); https://doi.org/10.1016/j.ejmech.2014.02.049
- N. Raman and N. Pravin, Eur. J. Med. Chem., 80, 57 (2014); https://doi.org/10.1016/j.ejmech.2014.04.032
- G. Psomas, J. Inorg. Biochem., 102, 1798 (2008); https://doi.org/10.1016/j.jinorgbio.2008.05.012
- X. Qiao, Z.-Y. Ma, C.-Z. Xie, F. Xue, Y.-W. Zhang, J.-Y. Xu, Z.-Y. Qiang, J.-S. Lou, G.-J. Chen and S.-P. Yan, J. Inorg. Biochem., 105, 728 (2011); https://doi.org/10.1016/j.jinorgbio.2011.01.004
- N.M. Nasar, M. Samuel, P. Jayaraman, F.S. Sheela and N. Raman, Asian J. Chem., 35, 639 (2023); https://doi.org/10.14233/ajchem.2023.27565
- F.T. Elmali, J. Mol. Struct., 1261, 132900 (2022); https://doi.org/10.1016/j.molstruc.2022.132900
- E. Oguzcan, Z. Koksal, T. Taskin-Tok, A. Uzgoren-Baran and N. Akbay, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 270, 120787 (2022); https://doi.org/10.1016/j.saa.2021.120787
- S.V. Aswathy, I.H. Joe and K.B. Rameshkumar, J. Mol. Struct., 1263, 133152 (2022); https://doi.org/10.1016/j.molstruc.2022.133152
- M.N. Uddin, M.S. Amin, M.S. Rahman, S. Khandaker, W. Shumi, M.A. Rahman and S.M. Rahman, Appl. Organomet. Chem., 35, e6067 (2021); https://doi.org/10.1002/aoc.6067
- A. Senocak, N.A. Tas, P. Taslimi, B. Tüzün, A. Aydin and A. Karadag, J. Biochem. Mol. Toxicol., 36, e22969 (2022); https://doi.org/10.1002/jbt.22969
- M. Balouiri, M. Sadiki and S.K. Ibnsouda, J. Pharm. Anal., 6, 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
- M. Gupta, B.K. Sarma, S. Chandra, S. Gupta and S. Singhal, Int. J. Therap. Appl., 35, 29 (2018).
- Q.H. Tran and T.T. Doan, New J. Chem., 44, 13036 (2020); https://doi.org/10.1039/D0NJ01159B
- K. Nakamato, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley: New York, Edn. 4 (1986).
- M. Shakir, A. Abbasi, A.U. Khan and S.N. Khan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 29 (2011); https://doi.org/10.1016/j.saa.2010.02.034
- N. Shahabadi, S. Kashanian and F. Darabi, Eur. J. Med. Chem., 45, 4239 (2010); https://doi.org/10.1016/j.ejmech.2010.06.020
- J.Z. Wu, L. Yuan and J.F. Wu, J. Inorg. Biochem., 99, 2211 (2005); https://doi.org/10.1016/j.jinorgbio.2005.08.002
- C.N. N’soukpoé-Kossi, C. Descôteaux, É. Asselin, H.-A. Tajmir-Riahi and G. Bérubé, DNA Cell Biol., 27, 101 (2008); https://doi.org/10.1089/dna.2007.0669
- S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 32, 2573 (1993); https://doi.org/10.1021/bi00061a015
- S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 31, 9319 (1992); https://doi.org/10.1021/bi00154a001
- S. Packianathan, G. Kumaravel and N. Raman, Appl. Organomet. Chem., 31, e3577 (2017); https://doi.org/10.1002/aoc.3577
- Y. Anjaneyulu and R.P. Rao, Synth. React. Inorg. Met.-Org. Chem., 16, 257 (1986); https://doi.org/10.1080/00945718608057530
- N.N. Al-Mohammed, Y. Alias, Z. Abdullah, R.M. Shakir, E.M. Taha and A.A. Hamid, Molecules, 18, 11978 (2013); https://doi.org/10.3390/molecules181011978
- R. Taherlo and M. Salehi, Inorg. Chim. Acta, 418, 180 (2014); https://doi.org/10.1016/j.ica.2014.04.028
- S. Daravath, A. Rambabu, N. Vamsikrishna, N. Ganji and S. Raj, J. Coord. Chem., 72, 1973 (2019); https://doi.org/10.1080/00958972.2019.1634263
- K.S. Abou-Melha, G.A. Al-Hazmi, I. Althagafi, A. Alharbi, F. Shaaban, N.M. El-Metwaly, M.A. El-Bindary and M.A. El-Bindary, J. Mol. Liq., 334, 116498 (2021); https://doi.org/10.1016/j.molliq.2021.116498
- B. Mohan and M. Choudhary, J. Mol. Struct., 1246, 131246 (2021); https://doi.org/10.1016/j.molstruc.2021.131246
- M. Samuel, R. Rajasekar, P. Jeyaraman, S. Muthusamy, V. Muniyandi and N. Raman, Inorg. Chim. Acta, 533, 120783 (2022); https://doi.org/10.1016/j.ica.2021.120783
- R. Reshma, R. Selwin Joseyphus, D. Arish, R.J. Reshmi Jaya and J. Johnson, J. Biomol. Struct. Dyn., 40, 8602 (2022); https://doi.org/10.1080/07391102.2021.1914171
- J. Porkodi and N. Raman, Appl. Organomet. Chem., 32, e4030 (2018); https://doi.org/10.1002/aoc.4030
- S. Michael, P. Jeyaraman, B. Marimuthu, R. Rajasekar, R. Thanasamy, K.A. Kumar and N. Raman, J. Mol. Struct., 1279, 134987 (2023); https://doi.org/10.1016/j.molstruc.2023.134987
References
G.J. Kelloff, Adv. Cancer Res., 78, 199 (1999); https://doi.org/10.1016/S0065-230X(08)61026-X
S. Jana, R.C. Santra, A. Frontera, M.G.B. Drew, J. Ortega-Castro, D. Fernandez, S. Das and S. Chattopadhyay, ChemistrySelect, 1, 448 (2016); https://doi.org/10.1002/slct.201500018
C.G. Hartinger and P.J. Dyson, Chem. Soc. Rev., 38, 391 (2009); https://doi.org/10.1039/B707077M
G.S. Smith and B. Therrien, Dalton Trans., 40, 10793 (2011); https://doi.org/10.1039/c1dt11007a
N.P.E. Barry and P.J. Sadler, Chem. Commun., 49, 5106 (2013); https://doi.org/10.1039/c3cc41143e
P. Govender, B. Therrien and G.S. Smith, Eur. J. Inorg. Chem., 2853 (2012); https://doi.org/10.1002/ejic.201200161
U. Jungwirth, C.R. Kowol, B.K. Keppler, C.G. Hartinger, W. Berger and P. Heffeter, Antioxid. Redox Signal., 15, 1085 (2011); https://doi.org/10.1089/ars.2010.3663
C.H. Wang, W.C. Shih, H.C. Chang, Y.Y. Kuo, W.C. Hung, T.G. Ong and W.S. Li, J. Med. Chem., 54, 5245 (2011); https://doi.org/10.1021/jm101096x
S. Kundu, A.K. Pramanik, A.S. Mondal and T.K. Mondal, J. Mol. Struct., 1116, 1 (2016); https://doi.org/10.1016/j.molstruc.2016.03.013
K. Buldurun, N. Turan, A. Savci and N. Çolak, J. Saudi Chem. Soc., 23, 205 (2019); https://doi.org/10.1016/j.jscs.2018.06.002
A. Gölcü, M. Tümer, H. Demirelli and R.A. Wheatley, Inorg. Chim. Acta, 358, 1785 (2005); https://doi.org/10.1016/j.ica.2004.11.026
P. Krishnamoorthy, P. Sathyadevi, K. Senthilkumar, P.T. Muthiah, R. Ramesh and N. Dharmaraj, Inorg. Chem. Commun., 14, 1318 (2011); https://doi.org/10.1016/j.inoche.2011.05.004
R.V. Sakthivel, P. Sankudevan, P. Vennila, G. Venkatesh, S. Kaya and G. Serdaroðlu, J. Mol. Struct., 1233, 130097 (2021); https://doi.org/10.1016/j.molstruc.2021.130097
A.K. Patra, M. Nethaji and A.R. Chakravarty, J. Inorg. Biochem., 101, 233 (2007); https://doi.org/10.1016/j.jinorgbio.2006.09.018
A. Silvestri, G. Barone, G. Ruisi, M.T. Lo Giudice and S.J. Tumminello, J. Inorg. Biochem., 98, 589 (2004); https://doi.org/10.1016/j.jinorgbio.2004.01.010
M. Navarro, E.J. Cisneros-Fajardo, A. Sierralta, M. Fernandez-Mestre, P. Silva, D. Arrieche and E. Marchan, J. Biol. Inorg. Chem., 8, 401 (2003); https://doi.org/10.1007/s00775-002-0427-2
S.N. Pandeya, D. Sriram, G. Nath and E. De Clercq, Pharm. Acta Helv., 74, 11 (1999); https://doi.org/10.1016/S0031-6865(99)00010-2
S.N. Pandeya, D. Sriram, G. Nath and E. de Clercq, Arzneimittelforschung, 50, 55 (2000); https://doi.org/10.1055/s-0031-1300164
W.M. Singh and B.C. Dash, Pesticides, 22, 33 (1988).
J.L. Kelley, J.A. Linn, D.D. Bankston, C.J. Burchall, F.E. Soroko and B.R. Cooper, J. Med. Chem., 38, 3676 (1995); https://doi.org/10.1021/jm00018a029
G. Turan-Zitouni, Z.A. Kaplancikli, A. Özdemir, P. Chevallet, H.B. Kandilci and B. Gümüsel, Arch. Pharm., 340, 586 (2007); https://doi.org/10.1002/ardp.200700134
M.T.H. Tarafder, A. Kasbollah, N. Saravanan, K.A. Crouse, A.M. Ali and K. Tin Oo, J. Biochem. Mol. Biol. Biophys., 6, 85 (2002); https://doi.org/10.1080/10258140290027207
S.T. Chew, K.M. Lo, S.K. Lee, M.P. Heng, W.Y. Teoh, K.S. Sim and K.W. Tan, Eur. J. Med. Chem., 76, 397 (2014); https://doi.org/10.1016/j.ejmech.2014.02.049
N. Raman and N. Pravin, Eur. J. Med. Chem., 80, 57 (2014); https://doi.org/10.1016/j.ejmech.2014.04.032
G. Psomas, J. Inorg. Biochem., 102, 1798 (2008); https://doi.org/10.1016/j.jinorgbio.2008.05.012
X. Qiao, Z.-Y. Ma, C.-Z. Xie, F. Xue, Y.-W. Zhang, J.-Y. Xu, Z.-Y. Qiang, J.-S. Lou, G.-J. Chen and S.-P. Yan, J. Inorg. Biochem., 105, 728 (2011); https://doi.org/10.1016/j.jinorgbio.2011.01.004
N.M. Nasar, M. Samuel, P. Jayaraman, F.S. Sheela and N. Raman, Asian J. Chem., 35, 639 (2023); https://doi.org/10.14233/ajchem.2023.27565
F.T. Elmali, J. Mol. Struct., 1261, 132900 (2022); https://doi.org/10.1016/j.molstruc.2022.132900
E. Oguzcan, Z. Koksal, T. Taskin-Tok, A. Uzgoren-Baran and N. Akbay, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 270, 120787 (2022); https://doi.org/10.1016/j.saa.2021.120787
S.V. Aswathy, I.H. Joe and K.B. Rameshkumar, J. Mol. Struct., 1263, 133152 (2022); https://doi.org/10.1016/j.molstruc.2022.133152
M.N. Uddin, M.S. Amin, M.S. Rahman, S. Khandaker, W. Shumi, M.A. Rahman and S.M. Rahman, Appl. Organomet. Chem., 35, e6067 (2021); https://doi.org/10.1002/aoc.6067
A. Senocak, N.A. Tas, P. Taslimi, B. Tüzün, A. Aydin and A. Karadag, J. Biochem. Mol. Toxicol., 36, e22969 (2022); https://doi.org/10.1002/jbt.22969
M. Balouiri, M. Sadiki and S.K. Ibnsouda, J. Pharm. Anal., 6, 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
M. Gupta, B.K. Sarma, S. Chandra, S. Gupta and S. Singhal, Int. J. Therap. Appl., 35, 29 (2018).
Q.H. Tran and T.T. Doan, New J. Chem., 44, 13036 (2020); https://doi.org/10.1039/D0NJ01159B
K. Nakamato, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley: New York, Edn. 4 (1986).
M. Shakir, A. Abbasi, A.U. Khan and S.N. Khan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 78, 29 (2011); https://doi.org/10.1016/j.saa.2010.02.034
N. Shahabadi, S. Kashanian and F. Darabi, Eur. J. Med. Chem., 45, 4239 (2010); https://doi.org/10.1016/j.ejmech.2010.06.020
J.Z. Wu, L. Yuan and J.F. Wu, J. Inorg. Biochem., 99, 2211 (2005); https://doi.org/10.1016/j.jinorgbio.2005.08.002
C.N. N’soukpoé-Kossi, C. Descôteaux, É. Asselin, H.-A. Tajmir-Riahi and G. Bérubé, DNA Cell Biol., 27, 101 (2008); https://doi.org/10.1089/dna.2007.0669
S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 32, 2573 (1993); https://doi.org/10.1021/bi00061a015
S. Satyanarayana, J.C. Dabrowiak and J.B. Chaires, Biochemistry, 31, 9319 (1992); https://doi.org/10.1021/bi00154a001
S. Packianathan, G. Kumaravel and N. Raman, Appl. Organomet. Chem., 31, e3577 (2017); https://doi.org/10.1002/aoc.3577
Y. Anjaneyulu and R.P. Rao, Synth. React. Inorg. Met.-Org. Chem., 16, 257 (1986); https://doi.org/10.1080/00945718608057530
N.N. Al-Mohammed, Y. Alias, Z. Abdullah, R.M. Shakir, E.M. Taha and A.A. Hamid, Molecules, 18, 11978 (2013); https://doi.org/10.3390/molecules181011978
R. Taherlo and M. Salehi, Inorg. Chim. Acta, 418, 180 (2014); https://doi.org/10.1016/j.ica.2014.04.028
S. Daravath, A. Rambabu, N. Vamsikrishna, N. Ganji and S. Raj, J. Coord. Chem., 72, 1973 (2019); https://doi.org/10.1080/00958972.2019.1634263
K.S. Abou-Melha, G.A. Al-Hazmi, I. Althagafi, A. Alharbi, F. Shaaban, N.M. El-Metwaly, M.A. El-Bindary and M.A. El-Bindary, J. Mol. Liq., 334, 116498 (2021); https://doi.org/10.1016/j.molliq.2021.116498
B. Mohan and M. Choudhary, J. Mol. Struct., 1246, 131246 (2021); https://doi.org/10.1016/j.molstruc.2021.131246
M. Samuel, R. Rajasekar, P. Jeyaraman, S. Muthusamy, V. Muniyandi and N. Raman, Inorg. Chim. Acta, 533, 120783 (2022); https://doi.org/10.1016/j.ica.2021.120783
R. Reshma, R. Selwin Joseyphus, D. Arish, R.J. Reshmi Jaya and J. Johnson, J. Biomol. Struct. Dyn., 40, 8602 (2022); https://doi.org/10.1080/07391102.2021.1914171
J. Porkodi and N. Raman, Appl. Organomet. Chem., 32, e4030 (2018); https://doi.org/10.1002/aoc.4030
S. Michael, P. Jeyaraman, B. Marimuthu, R. Rajasekar, R. Thanasamy, K.A. Kumar and N. Raman, J. Mol. Struct., 1279, 134987 (2023); https://doi.org/10.1016/j.molstruc.2023.134987