This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption of Heavy Metals by Chopped Human Hair: An Equilibrium and Kinetic Study
Corresponding Author(s) : M. Amin Mir
Asian Journal of Chemistry,
Vol. 35 No. 6 (2023): Vol 35 Issue 6, 2023
Abstract
In this work, heavy metal adsorption by hair particles as adsorbents was studied and analyzed. The kinetic and isothermal studies were performed by optimizing the initial concentration and the pH. The adsorption isotherms of the majority of the metals are more suited to either the Langmuir or Freundlich models. The uptake capacity of hair material to absorb metals was found to be in the order of Pb2+ > Cu2+ > Zn2+. According to the adsorption data, metal ions adhere to hair particles as confirmed through a pseudo-second-order process. The kinetic study demonstrated that metal adsorption on hair particles involves both intraparticle diffusion and surface adsorption. According to the column studies, hair particles are more effective adsorbent for removing the heavy metals from aqueous solutions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Jawed, V. Saxena and L.M. Pandey, J. Water Process Eng., 33, 101009 (2020); https://doi.org/10.1016/j.jwpe.2019.101009
- S. Singh, V. Kumar, A. Chauhan, S. Datta, A.B. Wani, N. Singh and J. Singh, Environ. Chem. Lett., 16, 211 (2018); https://doi.org/10.1007/s10311-017-0665-8
- R. Bhateria and R. Singh, J. Water Process Eng., 31, 100845 (2019); https://doi.org/10.1016/j.jwpe.2019.100845
- J. Yang, B. Hou, J. Wang, B. Tian, J. Bi, N. Wang, X. Li and X. Huang, Nanomaterials, 9, 424 (2019); https://doi.org/10.3390/nano9030424
- D. Mohan and K.P. Singh, Water Res., 36, 2304 (2002); https://doi.org/10.1016/S0043-1354(01)00447-X
- N.A. Khan, S.I. Ali and S. Ayub, Sultan Qaboos Univ. J. Sci., 6, 13 (2001); https://doi.org/10.24200/squjs.vol6iss2pp13-19
- K. Srinivasan, N. Balasubramaniam and T.V. Ramakrishna, Indian J. Environ. Health, 30, 376 (1998).
- E. Munaf and R. Zein, Environ. Technol., 18, 359 (1997); https://doi.org/10.1080/09593331808616549
- M. Ajmal, R.A.K. Rao, S. Anwar, J. Ahmad and R. Ahmad, Bioresour. Technol., 86, 147 (2003); https://doi.org/10.1016/S0960-8524(02)00159-1
- M. Ajmal, R.A. Khan Rao and B.A. Siddiqui, Water Res., 30, 1478 (1996); https://doi.org/10.1016/0043-1354(95)00301-0
- K. Kadirvelu, M. Kavipriya, C. Karthika, M. Radhika, N. Vennilamani and S. Pattabhi, Bioresour. Technol., 87, 129 (2003); https://doi.org/10.1016/S0960-8524(02)00201-8
- W.T. Tan, S.T. Ooi and C.K. Lee, Environ. Technol., 14, 277 (1993); https://doi.org/10.1080/09593339309385290
- R. Baby, B. Saifullah and M.Z. Hussein, Sci. Rep., 9, 18955 (2019); https://doi.org/10.1038/s41598-019-55099-6
- S. Ayub, S.I. Ali and N.A. Khan, Environ. Pollut. Control J., 4, 34 (2001).
- T.C. Tan, C.K. Chia and C.K. Teo, Water Res., 19, 157 (1985); https://doi.org/10.1016/0043-1354(85)90193-9
- A.O. Ifelebuegu, T.V.A. Nguyen, P. Ukotije-Ikwut and Z. Momoh, J. Environ. Chem. Eng., 3, 938 (2015); https://doi.org/10.1016/j.jece.2015.02.015
- APHA, Standard Methods for Examination of Water and Waterwaste. In: American Public Health Association, American Water Works Association, Water Environmental Federation, Washington, D.C., Edn. 18 (1998).
- M.E. Sumner and W.P. Miller, eds.: D.L. Sparks, Cation Exchange Capacity and Exchange Coefficients, In: Method of Soil Analysis, Part 3, Chemical analysis, American Society of Agronomy, Madison, WI, pp. 1201-1230 (1996).
- J. Hur and M.A. Schlautman, Environ. Sci. Technol., 37, 880 (2003); https://doi.org/10.1021/es0260824
- S. Al-Asheh and Z. Duvnjak, J. Hazard. Mater., 56, 35 (1997); https://doi.org/10.1016/S0304-3894(97)00040-X
- V.C. Taty Costodes, H. Fauduet, C. Porte and Y.S. Ho, J. Hazard. Mater., 123, 135 (2005); https://doi.org/10.1016/j.jhazmat.2005.03.032
- B. Yu, Y. Zhang, A. Shukla, S.S. Shukla and K.L. Dorris, J. Hazard. Mater., 84, 83 (2001); https://doi.org/10.1016/S0304-3894(01)00198-4
- Y.S. Al-Degs, M.I. El-Barghouthi, A.A. Issa, M.A. Khraisheh and G.M. Walker, Water Res., 40, 2645 (2006); https://doi.org/10.1016/j.watres.2006.05.018
- K.K. Singh, A.K. Singh and S. Hasan, Bioresour. Technol., 97, 994 (2006); https://doi.org/10.1016/j.biortech.2005.04.043
- M. Al-Qunaibit, M. Khalil and A. Al-Wassil, Chemosphere, 60, 412 (2005); https://doi.org/10.1016/j.chemosphere.2004.12.040
References
A. Jawed, V. Saxena and L.M. Pandey, J. Water Process Eng., 33, 101009 (2020); https://doi.org/10.1016/j.jwpe.2019.101009
S. Singh, V. Kumar, A. Chauhan, S. Datta, A.B. Wani, N. Singh and J. Singh, Environ. Chem. Lett., 16, 211 (2018); https://doi.org/10.1007/s10311-017-0665-8
R. Bhateria and R. Singh, J. Water Process Eng., 31, 100845 (2019); https://doi.org/10.1016/j.jwpe.2019.100845
J. Yang, B. Hou, J. Wang, B. Tian, J. Bi, N. Wang, X. Li and X. Huang, Nanomaterials, 9, 424 (2019); https://doi.org/10.3390/nano9030424
D. Mohan and K.P. Singh, Water Res., 36, 2304 (2002); https://doi.org/10.1016/S0043-1354(01)00447-X
N.A. Khan, S.I. Ali and S. Ayub, Sultan Qaboos Univ. J. Sci., 6, 13 (2001); https://doi.org/10.24200/squjs.vol6iss2pp13-19
K. Srinivasan, N. Balasubramaniam and T.V. Ramakrishna, Indian J. Environ. Health, 30, 376 (1998).
E. Munaf and R. Zein, Environ. Technol., 18, 359 (1997); https://doi.org/10.1080/09593331808616549
M. Ajmal, R.A.K. Rao, S. Anwar, J. Ahmad and R. Ahmad, Bioresour. Technol., 86, 147 (2003); https://doi.org/10.1016/S0960-8524(02)00159-1
M. Ajmal, R.A. Khan Rao and B.A. Siddiqui, Water Res., 30, 1478 (1996); https://doi.org/10.1016/0043-1354(95)00301-0
K. Kadirvelu, M. Kavipriya, C. Karthika, M. Radhika, N. Vennilamani and S. Pattabhi, Bioresour. Technol., 87, 129 (2003); https://doi.org/10.1016/S0960-8524(02)00201-8
W.T. Tan, S.T. Ooi and C.K. Lee, Environ. Technol., 14, 277 (1993); https://doi.org/10.1080/09593339309385290
R. Baby, B. Saifullah and M.Z. Hussein, Sci. Rep., 9, 18955 (2019); https://doi.org/10.1038/s41598-019-55099-6
S. Ayub, S.I. Ali and N.A. Khan, Environ. Pollut. Control J., 4, 34 (2001).
T.C. Tan, C.K. Chia and C.K. Teo, Water Res., 19, 157 (1985); https://doi.org/10.1016/0043-1354(85)90193-9
A.O. Ifelebuegu, T.V.A. Nguyen, P. Ukotije-Ikwut and Z. Momoh, J. Environ. Chem. Eng., 3, 938 (2015); https://doi.org/10.1016/j.jece.2015.02.015
APHA, Standard Methods for Examination of Water and Waterwaste. In: American Public Health Association, American Water Works Association, Water Environmental Federation, Washington, D.C., Edn. 18 (1998).
M.E. Sumner and W.P. Miller, eds.: D.L. Sparks, Cation Exchange Capacity and Exchange Coefficients, In: Method of Soil Analysis, Part 3, Chemical analysis, American Society of Agronomy, Madison, WI, pp. 1201-1230 (1996).
J. Hur and M.A. Schlautman, Environ. Sci. Technol., 37, 880 (2003); https://doi.org/10.1021/es0260824
S. Al-Asheh and Z. Duvnjak, J. Hazard. Mater., 56, 35 (1997); https://doi.org/10.1016/S0304-3894(97)00040-X
V.C. Taty Costodes, H. Fauduet, C. Porte and Y.S. Ho, J. Hazard. Mater., 123, 135 (2005); https://doi.org/10.1016/j.jhazmat.2005.03.032
B. Yu, Y. Zhang, A. Shukla, S.S. Shukla and K.L. Dorris, J. Hazard. Mater., 84, 83 (2001); https://doi.org/10.1016/S0304-3894(01)00198-4
Y.S. Al-Degs, M.I. El-Barghouthi, A.A. Issa, M.A. Khraisheh and G.M. Walker, Water Res., 40, 2645 (2006); https://doi.org/10.1016/j.watres.2006.05.018
K.K. Singh, A.K. Singh and S. Hasan, Bioresour. Technol., 97, 994 (2006); https://doi.org/10.1016/j.biortech.2005.04.043
M. Al-Qunaibit, M. Khalil and A. Al-Wassil, Chemosphere, 60, 412 (2005); https://doi.org/10.1016/j.chemosphere.2004.12.040