This work is licensed under a Creative Commons Attribution 4.0 International License.
Tailoring the Mechanistic Pathways and Kinetics of Decomposition of CH3CH2C(O)OCH2CH2O Radical: A DFT Study
Corresponding Author(s) : Arumugam Murugan
Asian Journal of Chemistry,
Vol. 35 No. 6 (2023): Vol 35 Issue 6, 2023
Abstract
The potential energy surface (PES) of the oxidative pathways and unimolecular decomposition of CH3CH2C(O)OCH2CH2O radical formed from ethyl propionate has been investigated in details using ab initio density functional method. In present study, it is revealed that five major decomposition pathways with their kinetic and thermodynamics parameters. The geometries of reactants, transition states and product radicals were optimized using the model DFT method M06-2X along with the 6-31+G(d,p) basis set. The mechanistic, kinetic and thermochemical analysis was carried out at the M06-2X/aug-cc-pVTZ//M06-2X/6-311++G(d,p) level. Based on present results, it can be concluded that the oxidative pathway is the most significant for decomposition of CH3CH2C(O)OCH2CH2O radical. The rate coefficients for each reaction channels were determined in a wide range of temperature 250-450 K.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.Y.W. Lai, K.C. Lin and A. Violi, Pror. Energy Combust. Sci., 37, 1 (2011); https://doi.org/10.1016/j.pecs.2010.03.001
- A. Demirbas, Energy Policy, 35, 4661 (2007); https://doi.org/10.1016/j.enpol.2007.04.003
- W. Li, J. Li, H. Ning, Y. Shang and S.N. Luo, J. Phys. Chem. A, 125, 5103 (2021); https://doi.org/10.1021/acs.jpca.1c01788
- V.F. Andersen, K.B. Ørnsø, S. Jørgensen, O.J. Nielsen and M.S. Johnson, J. Phys. Chem. A, 116, 5164 (2012); https://doi.org/10.1021/jp300897t
- Y. Ninomiya, M. Kawasaki, A. Guschin, L.T. Molina, M.J. Molina and T.J. Wallington, Environ. Sci. Technol., 34, 2973 (2000); https://doi.org/10.1021/es991449z
- L.K. Christensen, J.C. Ball and T.J. Wallington, J. Phys. Chem. A, 104, 345 (2000); https://doi.org/10.1021/jp993127n
- T.J. Wallington, W.F. Schneider, J. Sehested, M. Bilde, J. Platz, O.J. Nielsen, L.K. Christensen, M.J. Molina, L.T. Molina and P.W. Wooldridge, J. Phys. Chem. A, 101, 8264 (1997); https://doi.org/10.1021/jp971353w
- J.J. Orlando and G.S. Tyndall, Int. J. Chem. Kinet., 42, 397 (2010); https://doi.org/10.1002/kin.20493
- B. Picquet-Varrault, J.F. Doussin, R. Durand-Jolibois and P. Carlier, Phys. Chem. Chem. Phys., 3, 2595 (2001); https://doi.org/10.1039/b101704g
- J.J. Orlando, G.S. Tyndall and T.J. Wallington, Chem. Rev., 103, 4657 (2003); https://doi.org/10.1021/cr020527p
- L. Vereecken and J.S. Francisco, Chem. Soc. Rev., 41, 6259 (2012); https://doi.org/10.1039/c2cs35070j
- B.K. Mishra, M. Lily, R.C. Deka and A.K. Chandra, New J. Chem., 40, 6148 (2016); https://doi.org/10.1039/C5NJ02752G
- D. Bhattacharjee, B.K. Mishra and R.C. Deka, J. Mol. Model., 21, 69 (2015); https://doi.org/10.1007/s00894-015-2629-x
- B.K. Mishra, N.K. Gour, D. Bhattacharjee and R.C. Deka, Mol. Phys., 114, 618 (2016); https://doi.org/10.1080/00268976.2015.1108471
- B.K. Mishra, M. Lily, R.C. Deka and A.K. Chandra, J. Mol. Graph. Model., 50, 90 (2014); https://doi.org/10.1016/j.jmgm.2014.03.009
- A. Reisi-Vanani and S. Hoseinpour, Arab. J. Chem., 10, S1604 (2017); https://doi.org/10.1016/j.arabjc.2013.05.030
- J.J. Orlando, Phys. Chem. Chem. Phys., 9, 4189 (2007); https://doi.org/10.1039/b706819k
- M.A. Ferenac, A.J. Davis, A.S. Holloway and T.S. Dibble, J. Phys. Chem. A, 107, 63 (2003); https://doi.org/10.1021/jp0262923
- H. Somnitz and R. Zellner, Phys. Chem. Chem. Phys., 2, 1907 (2000); https://doi.org/10.1039/b000029i
- H. Somnitz and R. Zellner, Phys. Chem. Chem. Phys., 2, 1899 (2000); https://doi.org/10.1039/b000037j
- Y. Zhao, X. Sun, W. Wang and L. Xu, Can. J. Chem., 92, 598 (2014); https://doi.org/10.1139/cjc-2014-0108
- M.-T. Rayez, B. Picquet-Varrault, F. Caralp and J.-C. Rayez, Phys. Chem. Chem. Phys., 4, 5789 (2002); https://doi.org/10.1039/B207511N
- B.K. Mishra, RSC Adv., 4, 16759 (2014); https://doi.org/10.1039/c4ra00881b
- M.J. Frisch et al. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA (2010).
- Y. Zhao and D.G. Truhlar, Theor. Chem. Acc., 120, 215 (2008); https://doi.org/10.1007/s00214-007-0310-x
- N.K. Gour, K. Borthakur, S. Paul and R.C. Deka, Chemosphere, 238, 124556 (2020); https://doi.org/10.1016/j.chemosphere.2019.124556
- M. Lily, B. Baidya and A.K. Chandra, Chem. Phys. Lett., 669, 211 (2017); https://doi.org/10.1016/j.cplett.2016.12.037
- P.K. Rao, R.C. Deka, N.K. Gour and S.P. Gejji, J. Phys. Chem. A, 122, 6799 (2018); https://doi.org/10.1021/acs.jpca.8b04225
- B. Baidya, M. Lily, D. Patgiri, S. Hynniewta and A.K. Chandra, New J. Chem., 44, 4276 (2020); https://doi.org/10.1039/C9NJ06069C
- S. Paul, B.K. Mishra, S.D. Baruah, R.C. Deka and N.K. Gour, Environ. Sci. Pollut. Res. Int., 27, 907 (2020); https://doi.org/10.1007/s11356-019-06975-1
- N.K. Gour, B.K. Mishra, P.J. Sarma, P. Begum and R.C. Deka, J. Fluor. Chem., 204, 11 (2017); https://doi.org/10.1016/j.jfluchem.2017.09.010
- C. Gonzalez and H.B. Schlegel, J. Chem. Phys., 90, 2154 (1989); https://doi.org/10.1063/1.456010
- T.J. Wallington, M.D. Hurley, T. Maurer, I. Barnes, K.H. Becker, K.G.S. Tyndall, J.J. Orlando, A.S. Pimentel and M. Bilde, J. Phys. Chem. A, 105, 5146 (2001); https://doi.org/10.1021/jp0041398
- K.J. Laidler, Chemical Kinetics, Pearson Education, New Delhi, India, Edn 3 (2004).
- H.S. Johnston and J. Heicklen, J. Phys. Chem., 66, 532 (1962); https://doi.org/10.1021/j100809a040
- R. Xiao, M. Noerpel, H. Ling Luk, Z. Wei and R. Spinney, Int. J. Quantum Chem., 114, 74 (2014); https://doi.org/10.1002/qua.24518
- S. Canneaux, F. Bohr and E. Henon, J. Comput. Chem., 35, 82 (2014); https://doi.org/10.1002/jcc.23470
References
J.Y.W. Lai, K.C. Lin and A. Violi, Pror. Energy Combust. Sci., 37, 1 (2011); https://doi.org/10.1016/j.pecs.2010.03.001
A. Demirbas, Energy Policy, 35, 4661 (2007); https://doi.org/10.1016/j.enpol.2007.04.003
W. Li, J. Li, H. Ning, Y. Shang and S.N. Luo, J. Phys. Chem. A, 125, 5103 (2021); https://doi.org/10.1021/acs.jpca.1c01788
V.F. Andersen, K.B. Ørnsø, S. Jørgensen, O.J. Nielsen and M.S. Johnson, J. Phys. Chem. A, 116, 5164 (2012); https://doi.org/10.1021/jp300897t
Y. Ninomiya, M. Kawasaki, A. Guschin, L.T. Molina, M.J. Molina and T.J. Wallington, Environ. Sci. Technol., 34, 2973 (2000); https://doi.org/10.1021/es991449z
L.K. Christensen, J.C. Ball and T.J. Wallington, J. Phys. Chem. A, 104, 345 (2000); https://doi.org/10.1021/jp993127n
T.J. Wallington, W.F. Schneider, J. Sehested, M. Bilde, J. Platz, O.J. Nielsen, L.K. Christensen, M.J. Molina, L.T. Molina and P.W. Wooldridge, J. Phys. Chem. A, 101, 8264 (1997); https://doi.org/10.1021/jp971353w
J.J. Orlando and G.S. Tyndall, Int. J. Chem. Kinet., 42, 397 (2010); https://doi.org/10.1002/kin.20493
B. Picquet-Varrault, J.F. Doussin, R. Durand-Jolibois and P. Carlier, Phys. Chem. Chem. Phys., 3, 2595 (2001); https://doi.org/10.1039/b101704g
J.J. Orlando, G.S. Tyndall and T.J. Wallington, Chem. Rev., 103, 4657 (2003); https://doi.org/10.1021/cr020527p
L. Vereecken and J.S. Francisco, Chem. Soc. Rev., 41, 6259 (2012); https://doi.org/10.1039/c2cs35070j
B.K. Mishra, M. Lily, R.C. Deka and A.K. Chandra, New J. Chem., 40, 6148 (2016); https://doi.org/10.1039/C5NJ02752G
D. Bhattacharjee, B.K. Mishra and R.C. Deka, J. Mol. Model., 21, 69 (2015); https://doi.org/10.1007/s00894-015-2629-x
B.K. Mishra, N.K. Gour, D. Bhattacharjee and R.C. Deka, Mol. Phys., 114, 618 (2016); https://doi.org/10.1080/00268976.2015.1108471
B.K. Mishra, M. Lily, R.C. Deka and A.K. Chandra, J. Mol. Graph. Model., 50, 90 (2014); https://doi.org/10.1016/j.jmgm.2014.03.009
A. Reisi-Vanani and S. Hoseinpour, Arab. J. Chem., 10, S1604 (2017); https://doi.org/10.1016/j.arabjc.2013.05.030
J.J. Orlando, Phys. Chem. Chem. Phys., 9, 4189 (2007); https://doi.org/10.1039/b706819k
M.A. Ferenac, A.J. Davis, A.S. Holloway and T.S. Dibble, J. Phys. Chem. A, 107, 63 (2003); https://doi.org/10.1021/jp0262923
H. Somnitz and R. Zellner, Phys. Chem. Chem. Phys., 2, 1907 (2000); https://doi.org/10.1039/b000029i
H. Somnitz and R. Zellner, Phys. Chem. Chem. Phys., 2, 1899 (2000); https://doi.org/10.1039/b000037j
Y. Zhao, X. Sun, W. Wang and L. Xu, Can. J. Chem., 92, 598 (2014); https://doi.org/10.1139/cjc-2014-0108
M.-T. Rayez, B. Picquet-Varrault, F. Caralp and J.-C. Rayez, Phys. Chem. Chem. Phys., 4, 5789 (2002); https://doi.org/10.1039/B207511N
B.K. Mishra, RSC Adv., 4, 16759 (2014); https://doi.org/10.1039/c4ra00881b
M.J. Frisch et al. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA (2010).
Y. Zhao and D.G. Truhlar, Theor. Chem. Acc., 120, 215 (2008); https://doi.org/10.1007/s00214-007-0310-x
N.K. Gour, K. Borthakur, S. Paul and R.C. Deka, Chemosphere, 238, 124556 (2020); https://doi.org/10.1016/j.chemosphere.2019.124556
M. Lily, B. Baidya and A.K. Chandra, Chem. Phys. Lett., 669, 211 (2017); https://doi.org/10.1016/j.cplett.2016.12.037
P.K. Rao, R.C. Deka, N.K. Gour and S.P. Gejji, J. Phys. Chem. A, 122, 6799 (2018); https://doi.org/10.1021/acs.jpca.8b04225
B. Baidya, M. Lily, D. Patgiri, S. Hynniewta and A.K. Chandra, New J. Chem., 44, 4276 (2020); https://doi.org/10.1039/C9NJ06069C
S. Paul, B.K. Mishra, S.D. Baruah, R.C. Deka and N.K. Gour, Environ. Sci. Pollut. Res. Int., 27, 907 (2020); https://doi.org/10.1007/s11356-019-06975-1
N.K. Gour, B.K. Mishra, P.J. Sarma, P. Begum and R.C. Deka, J. Fluor. Chem., 204, 11 (2017); https://doi.org/10.1016/j.jfluchem.2017.09.010
C. Gonzalez and H.B. Schlegel, J. Chem. Phys., 90, 2154 (1989); https://doi.org/10.1063/1.456010
T.J. Wallington, M.D. Hurley, T. Maurer, I. Barnes, K.H. Becker, K.G.S. Tyndall, J.J. Orlando, A.S. Pimentel and M. Bilde, J. Phys. Chem. A, 105, 5146 (2001); https://doi.org/10.1021/jp0041398
K.J. Laidler, Chemical Kinetics, Pearson Education, New Delhi, India, Edn 3 (2004).
H.S. Johnston and J. Heicklen, J. Phys. Chem., 66, 532 (1962); https://doi.org/10.1021/j100809a040
R. Xiao, M. Noerpel, H. Ling Luk, Z. Wei and R. Spinney, Int. J. Quantum Chem., 114, 74 (2014); https://doi.org/10.1002/qua.24518
S. Canneaux, F. Bohr and E. Henon, J. Comput. Chem., 35, 82 (2014); https://doi.org/10.1002/jcc.23470