This work is licensed under a Creative Commons Attribution 4.0 International License.
Catalyst Free Synthesis of Thioamides from Pyrazole Aldehydes using DMSO as Solvent
Corresponding Author(s) : S. Helen Perci
Asian Journal of Chemistry,
Vol. 35 No. 6 (2023): Vol 35 Issue 6, 2023
Abstract
A straightforward synthetic procedure for thioamides has been developed at 100 ºC using pyrazole aldehyde, a secondary amine, precipitated elemental sulphur and DMSO as solvent. The Willgerodt-Kindler reaction was successfully carried out by increasing the mole ratio of the precipitated sulphur and amine derivatives. The synthesized thioamides derivatives were characterized by 1H and 13C NMR, FT IR, HRMS spectrometric techniques. This method has various advantages, including high yields, a relatively rapid reaction time and the ability to operate in catalyst-free conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Nandi, R. Jamatia, R. Sarkar, F.K. Sarkar, S. Alam and A.K. Pal, ChemistrySelect, 7, e202201901 (2022); https://doi.org/10.1002/slct.202201901
- S.P. Pathare, P.S. Chaudhari and K.G. Akamanchi, Appl. Catal. A Gen., 425-426, 125 (2012); https://doi.org/10.1016/j.apcata.2012.03.012
- T. Zarganes-Tzitzikas, A.L. Chandgude and A. Dömling, Chem. Rec., 15, 981 (2015); https://doi.org/10.1002/tcr.201500201
- F. Wang, R. Langley, G. Gulten, L.G. Dover, G.S. Besra, W.R. Jacobs, Jr. and J.C. Sacchettini, J. Exp. Med., 204, 73 (2007); https://doi.org/10.1084/jem.20062100
- Y. Tan, B. Su, H. Zheng, Y. Song, Y. Wang and Y. Pang, Front. Microbiol., 8, 2358 (2017); https://doi.org/10.3389/fmicb.2017.02358
- P. Bovonsombat, P. Teecomegaet, P. Kulvaranon, K. Chobtumskul, S. Tungsirisurp, P. Sophanpanichkul, S. Losuwanakul, D. Soimaneewan, P. Kanjanwongpaisan, P. Siricharoensang, S. Choosakoonkriang and A. Pandey, Tetrahedron, 73, 6564 (2017); https://doi.org/10.1016/j.tet.2017.10.005
- M.H. Shinde and U.A. Kshirsagar, Green Chem., 18, 1455 (2016); https://doi.org/10.1039/C5GC02771C
- S. Eor, M.G. Choi, N. Kim, T. Sun and S.K. Chang, Tetrahedron Lett., 53, 4080 (2012); https://doi.org/10.1016/j.tetlet.2012.05.101
- J.W. Zhao, J.X. Xu and X.Z. Guo, Chin. Chem. Lett., 25, 1499 (2014); https://doi.org/10.1016/j.cclet.2014.05.019
- K. Manzor and F. Kelleher, Tetrahedron Lett., 57, 5237 (2016); https://doi.org/10.1016/j.tetlet.2016.10.036
- D.L. Priebbenow and C. Bolm, Chem. Soc. Rev., 42, 7870 (2013); https://doi.org/10.1039/C3CS60154D
References
S. Nandi, R. Jamatia, R. Sarkar, F.K. Sarkar, S. Alam and A.K. Pal, ChemistrySelect, 7, e202201901 (2022); https://doi.org/10.1002/slct.202201901
S.P. Pathare, P.S. Chaudhari and K.G. Akamanchi, Appl. Catal. A Gen., 425-426, 125 (2012); https://doi.org/10.1016/j.apcata.2012.03.012
T. Zarganes-Tzitzikas, A.L. Chandgude and A. Dömling, Chem. Rec., 15, 981 (2015); https://doi.org/10.1002/tcr.201500201
F. Wang, R. Langley, G. Gulten, L.G. Dover, G.S. Besra, W.R. Jacobs, Jr. and J.C. Sacchettini, J. Exp. Med., 204, 73 (2007); https://doi.org/10.1084/jem.20062100
Y. Tan, B. Su, H. Zheng, Y. Song, Y. Wang and Y. Pang, Front. Microbiol., 8, 2358 (2017); https://doi.org/10.3389/fmicb.2017.02358
P. Bovonsombat, P. Teecomegaet, P. Kulvaranon, K. Chobtumskul, S. Tungsirisurp, P. Sophanpanichkul, S. Losuwanakul, D. Soimaneewan, P. Kanjanwongpaisan, P. Siricharoensang, S. Choosakoonkriang and A. Pandey, Tetrahedron, 73, 6564 (2017); https://doi.org/10.1016/j.tet.2017.10.005
M.H. Shinde and U.A. Kshirsagar, Green Chem., 18, 1455 (2016); https://doi.org/10.1039/C5GC02771C
S. Eor, M.G. Choi, N. Kim, T. Sun and S.K. Chang, Tetrahedron Lett., 53, 4080 (2012); https://doi.org/10.1016/j.tetlet.2012.05.101
J.W. Zhao, J.X. Xu and X.Z. Guo, Chin. Chem. Lett., 25, 1499 (2014); https://doi.org/10.1016/j.cclet.2014.05.019
K. Manzor and F. Kelleher, Tetrahedron Lett., 57, 5237 (2016); https://doi.org/10.1016/j.tetlet.2016.10.036
D.L. Priebbenow and C. Bolm, Chem. Soc. Rev., 42, 7870 (2013); https://doi.org/10.1039/C3CS60154D