This work is licensed under a Creative Commons Attribution 4.0 International License.
Efficient Photodegradation of Methylene Blue using WLED with Nanosphere Graphitic Carbon Nitride Compared with its Bulk Counterpart
Corresponding Author(s) : Pingal Sarmah
Asian Journal of Chemistry,
Vol. 35 No. 6 (2023): Vol 35 Issue 6, 2023
Abstract
Herein, a simple solvothermal synthesis of graphitic carbon nitride nanosphere (g-CNN) at 180 ºC is reported. The photocatalytic activity of g-CNN was studied under an in-house developed white light emitting diode (WLED) reactor and characterized by FESEM, PXRD, FTIR, EDX, UV-visible spectroscopy and BET isotherm. The g-CNN has absorbance in visible light region and exhibits enhanced photocatalytic activity compared to bulk graphitic carbon nitride (BGCN) for photodegradation of methylene blue, which attributes to its lower surface area. The photocatalytic performance of g-CNN as function of pH of dye solution and catalyst amount were also studied. The g-CNN can be used for three repeated cycles with minimal change in photocatalytic efficiency. The solvothermal synthesis method at relative low temperature introduces terminal oxygen functionalities in g-CNN, which enhance light absorption and accelerate electron transfer results in improvement of photocatalytic efficiency of g-CNN. The results demonstrated the effectiveness of g-CNN as a photocatalyst for the treatment of water using visible light from WLED.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile and J.C. Polonio, Biotechnol. Res. Innov., 3, 275 (2019); https://doi.org/10.1016/j.biori.2019.09.001
- M.I. Din, R. Khalid, J. Najeeb and Z. Hussain, J. Clean. Prod., 298, 126567 (2021); https://doi.org/10.1016/j.jclepro.2021.126567
- P.O. Oladoye, T.O. Ajiboye, E.O. Omotola and O.J. Oyewola, Results Eng., 16, 100678 (2022); https://doi.org/10.1016/j.rineng.2022.100678
- D.R. Paul and S.P. Nehra, Environ. Sci. Pollut. Res. Int., 28, 3888 (2021); https://doi.org/10.1007/s11356-020-09432-6
- X. Luo, H. Liang, F. Qu, A. Ding, X. Cheng, C.Y. Tang and G. Li, Chemosphere, 200, 237 (2018); https://doi.org/10.1016/j.chemosphere.2018.02.113
- J. Hou, Y. Wang, J. Zhou, Y. Lu, Y. Liu and X. Lv, Surf. Interfaces, 22, 100889 (2021); https://doi.org/10.1016/j.surfin.2020.100889
- L. Suhadolnik, A. Pohar, U. Novak, B. Likozar, A. Miheliè and M. Èeh, J. Ind. Eng. Chem., 72, 178 (2019); https://doi.org/10.1016/j.jiec.2018.12.017
- J. Huang, L. Peng, G. Zeng, X. Li, Y. Zhao, L. Liu, F. Li and Q. Chai, Sep. Purif. Technol., 125, 83 (2014); https://doi.org/10.1016/j.seppur.2014.01.020
- O. Kazak, Y.R. Eker, I. Akin, H. Bingol and A. Tor, J. Environ. Chem. Eng., 5, 2639 (2017); https://doi.org/10.1016/j.jece.2017.05.018
- A. Kumar and G. Pandey, Mater. Sci. Eng. Int. J., 1, 106 (2017); https://doi.org/10.15406/mseij.2017.01.00018
- M. Rochkind, S. Pasternak and Y. Paz, Molecules. 20, 88 (2015); https://doi.org/10.3390/molecules20010088
- W. Yang, K. Ding, G. Chen, H. Wang and X. Deng, Molecules, 28, 2796 (2023); https://doi.org/10.3390/molecules28062796
- N. Gogoi, G. Borah, P.K. Gogoi and T.R. Chetia, Chem. Phys. Lett., 692, 224 (2018); https://doi.org/10.1016/j.cplett.2017.12.015
- J.F. Cruz-Filho, T.M.S. Costa, M.S. Lima, L.J. Silva, R.S. Santos, L.S. Cavalcante, E. Longo and G.E. Luz Jr., J. Photochem. Photobiol. A: Chem., 377, 14 (2019); https://doi.org/10.1016/j.jphotochem.2019.03.031
- M. Aggarwal, S. Basu, N.P. Shetti, M.N. Nadagouda, E.E. Kwon, Y.-K. Park and T.M. Aminabhavi, Chem. Eng. J., 425, 131402 (2021); https://doi.org/10.1016/j.cej.2021.131402
- X. Song, M. Wang, W. Liu, X. Li, Z. Zhu, P. Huo and Y. Yan, Appl. Surf. Sci., 577, 151810 (2022); https://doi.org/10.1016/j.apsusc.2021.151810
- Y. Qin, G. Dong, L. Zhang, G. Li and T. An, Environ. Res., 195, 110880 (2021); https://doi.org/10.1016/j.envres.2021.110880
- M.A. Gondal, A. Lais, M.A. Dastageer, D. Yang, K. Shen and X. Chang, Int. J. Energy Res., 41, 2162 (2017); https://doi.org/10.1002/er.3777
- L. Ma, H. Fan, M. Li, H. Tian, J. Fang and G. Dong, J. Mater. Chem. A Mater. Energy Sustain., 3, 22404 (2015); https://doi.org/10.1039/C5TA05850C
- L. Lin, H. Ou, Y. Zhang and X. Wang, ACS Catal., 6, 3921 (2016); https://doi.org/10.1021/acscatal.6b00922
- M. Ismael, Y. Wu, D.H. Taffa, P. Bottke and M. Wark, New J. Chem., 43, 6909 (2019); https://doi.org/10.1039/C9NJ00859D
- Z. Zhang, Y. Zhang, L. Lu, Y. Si, S. Zhang, Y. Chen, K. Dai, P. Duan, L. Duan and J. Liu, Appl. Surf. Sci., 391, 369 (2017); https://doi.org/10.1016/j.apsusc.2016.05.174
- H. Dou, D. Long, S. Zheng and Y. Zhang, Catal. Sci. Technol., 8, 3599 (2018); https://doi.org/10.1039/C8CY00904J
- T.K.A. Nguyen, T.T. Pham, H. Nguyen-Phu and E.W. Shin, Appl. Surf. Sci., 537, 148027 (2021); https://doi.org/10.1016/j.apsusc.2020.148027
- A.A. Yadav, S.W. Kang and Y.M. Hunge, J. Mater. Sci. Mater. Electron., 32, 15577 (2021); https://doi.org/10.1007/s10854-021-06106-y
- Y. Cui, Y. Tang and X. Wang, Mater. Lett., 161, 197 (2015); https://doi.org/10.1016/j.matlet.2015.08.106
- S.P. Pattnaik, A. Behera, R. Acharya and K. Parida, J. Environ. Chem. Eng., 7, 103456 (2019); https://doi.org/10.1016/j.jece.2019.103456
- H. Jigyasa, H. Singh and J.K. Rajput, Food Chem., 343, 128451 (2021); https://doi.org/10.1016/j.foodchem.2020.128451
- Q. Zhao, W. Wu, X. Wei, S. Jiang, T. Zhou, Q. Li and Q. Lu, Sens. Actuators B Chem., 248, 673 (2017); https://doi.org/10.1016/j.snb.2017.04.002
- G. Kesavan and S.M. Chen, Diamond Rel. Mater., 108, 107975 (2020); https://doi.org/10.1016/j.diamond.2020.107975
- A.O. Idris, E.O. Oseghe, T.A.M. Msagati, A.T. Kuvarega, U. Feleni and B. Mamba, Sensors, 20, 5743 (2020); https://doi.org/10.3390/s20205743
- Y. Gong, M. Li, H. Li and Y. Wang, Green Chem., 17, 715 (2015); https://doi.org/10.1039/C4GC01847H
- M. Baar and S. Blechert, Chem. Eur. J., 21, 526 (2015); https://doi.org/10.1002/chem.201405505
- N.D. Shcherban, P. Mäki-Arvela, A. Aho, S.A. Sergiienko, P.S. Yaremov, K. Eränen and D.Y. Murzin, Catal. Sci. Technol., 8, 2928 (2018); https://doi.org/10.1039/C8CY00253C
- B. Kurpil, B. Kumru, T. Heil, M. Antonietti and A. Savateev, Green Chem., 20, 838 (2018); https://doi.org/10.1039/C7GC03734A
- D.R. Paul, R. Sharma, S.P. Nehra and A. Sharma, RSC Adv., 9, 15381 (2019); https://doi.org/10.1039/C9RA02201E
- H. Montigaud, B. Tanguy, G. Demazeau, I. Alves and S. Courjault, J. Mater. Sci., 35, 2547 (2000); https://doi.org/10.1023/A:1004798509417
- Q. Guo, Y. Xie, X. Wang, S. Lv, T. Hou and X. Liu, Chem. Phys. Lett., 380, 84 (2003); https://doi.org/10.1016/j.cplett.2003.09.009
- Y.J. Bai, B. Lü, Z.-G. Liu, L. Li, D.-L. Cui, X.-G. Xu and Q.-L. Wang, J. Cryst. Growth, 247, 505 (2003); https://doi.org/10.1016/S0022-0248(02)01981-4
- P. Praus, A. Smýkalová, K. Foniok, V. Matijka, M. Kormunda, B. Smetana and D. Cvejn, Appl. Surf. Sci., 529, 147086 (2020); https://doi.org/10.1016/j.apsusc.2020.147086
- B.K. Choudhury and S.K. Gogoi, Nano-Structures and Nano-Objects, 26, 100704 (2021); https://doi.org/10.1016/j.nanoso.2021.100704
- X. Cai, J. He, L. Chen, K. Chen, Y. Li, K. Zhang, Z. Jin, J. Liu, C. Wang, X. Wang, L. Kong and J. Liu, Chemosphere, 171, 192 (2017); https://doi.org/10.1016/j.chemosphere.2016.12.073
- P. Choudhary, A. Bahuguna, A. Kumar, S.S. Dhankhar, C.M. Nagaraja and V. Krishnan, Green Chem., 22, 5084 (2020); https://doi.org/10.1039/D0GC01123A
- Q. Gu, Z. Gao and C. Xue, Small, 12, 3543 (2016); https://doi.org/10.1002/smll.201600181
- Y. Wang, H. Wang, F. Chen, F. Cao, X. Zhao, S. Meng and Y. Cui, Appl. Catal. B, 206, 417 (2017); https://doi.org/10.1016/j.apcatb.2017.01.041
- S. Liu, D. Li, H. Sun, H.M. Ang, M.O. Tadé and S. Wang, J. Colloid Interface Sci., 468, 176 (2016); https://doi.org/10.1016/j.jcis.2016.01.051
- D. Fu, G. Han, F. Liu, Y. Xiao, H. Wang, R. Liu and C. Liu, Mater. Sci. Semicond. Process., 27, 966 (2014); https://doi.org/10.1016/j.mssp.2014.08.004
References
B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile and J.C. Polonio, Biotechnol. Res. Innov., 3, 275 (2019); https://doi.org/10.1016/j.biori.2019.09.001
M.I. Din, R. Khalid, J. Najeeb and Z. Hussain, J. Clean. Prod., 298, 126567 (2021); https://doi.org/10.1016/j.jclepro.2021.126567
P.O. Oladoye, T.O. Ajiboye, E.O. Omotola and O.J. Oyewola, Results Eng., 16, 100678 (2022); https://doi.org/10.1016/j.rineng.2022.100678
D.R. Paul and S.P. Nehra, Environ. Sci. Pollut. Res. Int., 28, 3888 (2021); https://doi.org/10.1007/s11356-020-09432-6
X. Luo, H. Liang, F. Qu, A. Ding, X. Cheng, C.Y. Tang and G. Li, Chemosphere, 200, 237 (2018); https://doi.org/10.1016/j.chemosphere.2018.02.113
J. Hou, Y. Wang, J. Zhou, Y. Lu, Y. Liu and X. Lv, Surf. Interfaces, 22, 100889 (2021); https://doi.org/10.1016/j.surfin.2020.100889
L. Suhadolnik, A. Pohar, U. Novak, B. Likozar, A. Miheliè and M. Èeh, J. Ind. Eng. Chem., 72, 178 (2019); https://doi.org/10.1016/j.jiec.2018.12.017
J. Huang, L. Peng, G. Zeng, X. Li, Y. Zhao, L. Liu, F. Li and Q. Chai, Sep. Purif. Technol., 125, 83 (2014); https://doi.org/10.1016/j.seppur.2014.01.020
O. Kazak, Y.R. Eker, I. Akin, H. Bingol and A. Tor, J. Environ. Chem. Eng., 5, 2639 (2017); https://doi.org/10.1016/j.jece.2017.05.018
A. Kumar and G. Pandey, Mater. Sci. Eng. Int. J., 1, 106 (2017); https://doi.org/10.15406/mseij.2017.01.00018
M. Rochkind, S. Pasternak and Y. Paz, Molecules. 20, 88 (2015); https://doi.org/10.3390/molecules20010088
W. Yang, K. Ding, G. Chen, H. Wang and X. Deng, Molecules, 28, 2796 (2023); https://doi.org/10.3390/molecules28062796
N. Gogoi, G. Borah, P.K. Gogoi and T.R. Chetia, Chem. Phys. Lett., 692, 224 (2018); https://doi.org/10.1016/j.cplett.2017.12.015
J.F. Cruz-Filho, T.M.S. Costa, M.S. Lima, L.J. Silva, R.S. Santos, L.S. Cavalcante, E. Longo and G.E. Luz Jr., J. Photochem. Photobiol. A: Chem., 377, 14 (2019); https://doi.org/10.1016/j.jphotochem.2019.03.031
M. Aggarwal, S. Basu, N.P. Shetti, M.N. Nadagouda, E.E. Kwon, Y.-K. Park and T.M. Aminabhavi, Chem. Eng. J., 425, 131402 (2021); https://doi.org/10.1016/j.cej.2021.131402
X. Song, M. Wang, W. Liu, X. Li, Z. Zhu, P. Huo and Y. Yan, Appl. Surf. Sci., 577, 151810 (2022); https://doi.org/10.1016/j.apsusc.2021.151810
Y. Qin, G. Dong, L. Zhang, G. Li and T. An, Environ. Res., 195, 110880 (2021); https://doi.org/10.1016/j.envres.2021.110880
M.A. Gondal, A. Lais, M.A. Dastageer, D. Yang, K. Shen and X. Chang, Int. J. Energy Res., 41, 2162 (2017); https://doi.org/10.1002/er.3777
L. Ma, H. Fan, M. Li, H. Tian, J. Fang and G. Dong, J. Mater. Chem. A Mater. Energy Sustain., 3, 22404 (2015); https://doi.org/10.1039/C5TA05850C
L. Lin, H. Ou, Y. Zhang and X. Wang, ACS Catal., 6, 3921 (2016); https://doi.org/10.1021/acscatal.6b00922
M. Ismael, Y. Wu, D.H. Taffa, P. Bottke and M. Wark, New J. Chem., 43, 6909 (2019); https://doi.org/10.1039/C9NJ00859D
Z. Zhang, Y. Zhang, L. Lu, Y. Si, S. Zhang, Y. Chen, K. Dai, P. Duan, L. Duan and J. Liu, Appl. Surf. Sci., 391, 369 (2017); https://doi.org/10.1016/j.apsusc.2016.05.174
H. Dou, D. Long, S. Zheng and Y. Zhang, Catal. Sci. Technol., 8, 3599 (2018); https://doi.org/10.1039/C8CY00904J
T.K.A. Nguyen, T.T. Pham, H. Nguyen-Phu and E.W. Shin, Appl. Surf. Sci., 537, 148027 (2021); https://doi.org/10.1016/j.apsusc.2020.148027
A.A. Yadav, S.W. Kang and Y.M. Hunge, J. Mater. Sci. Mater. Electron., 32, 15577 (2021); https://doi.org/10.1007/s10854-021-06106-y
Y. Cui, Y. Tang and X. Wang, Mater. Lett., 161, 197 (2015); https://doi.org/10.1016/j.matlet.2015.08.106
S.P. Pattnaik, A. Behera, R. Acharya and K. Parida, J. Environ. Chem. Eng., 7, 103456 (2019); https://doi.org/10.1016/j.jece.2019.103456
H. Jigyasa, H. Singh and J.K. Rajput, Food Chem., 343, 128451 (2021); https://doi.org/10.1016/j.foodchem.2020.128451
Q. Zhao, W. Wu, X. Wei, S. Jiang, T. Zhou, Q. Li and Q. Lu, Sens. Actuators B Chem., 248, 673 (2017); https://doi.org/10.1016/j.snb.2017.04.002
G. Kesavan and S.M. Chen, Diamond Rel. Mater., 108, 107975 (2020); https://doi.org/10.1016/j.diamond.2020.107975
A.O. Idris, E.O. Oseghe, T.A.M. Msagati, A.T. Kuvarega, U. Feleni and B. Mamba, Sensors, 20, 5743 (2020); https://doi.org/10.3390/s20205743
Y. Gong, M. Li, H. Li and Y. Wang, Green Chem., 17, 715 (2015); https://doi.org/10.1039/C4GC01847H
M. Baar and S. Blechert, Chem. Eur. J., 21, 526 (2015); https://doi.org/10.1002/chem.201405505
N.D. Shcherban, P. Mäki-Arvela, A. Aho, S.A. Sergiienko, P.S. Yaremov, K. Eränen and D.Y. Murzin, Catal. Sci. Technol., 8, 2928 (2018); https://doi.org/10.1039/C8CY00253C
B. Kurpil, B. Kumru, T. Heil, M. Antonietti and A. Savateev, Green Chem., 20, 838 (2018); https://doi.org/10.1039/C7GC03734A
D.R. Paul, R. Sharma, S.P. Nehra and A. Sharma, RSC Adv., 9, 15381 (2019); https://doi.org/10.1039/C9RA02201E
H. Montigaud, B. Tanguy, G. Demazeau, I. Alves and S. Courjault, J. Mater. Sci., 35, 2547 (2000); https://doi.org/10.1023/A:1004798509417
Q. Guo, Y. Xie, X. Wang, S. Lv, T. Hou and X. Liu, Chem. Phys. Lett., 380, 84 (2003); https://doi.org/10.1016/j.cplett.2003.09.009
Y.J. Bai, B. Lü, Z.-G. Liu, L. Li, D.-L. Cui, X.-G. Xu and Q.-L. Wang, J. Cryst. Growth, 247, 505 (2003); https://doi.org/10.1016/S0022-0248(02)01981-4
P. Praus, A. Smýkalová, K. Foniok, V. Matijka, M. Kormunda, B. Smetana and D. Cvejn, Appl. Surf. Sci., 529, 147086 (2020); https://doi.org/10.1016/j.apsusc.2020.147086
B.K. Choudhury and S.K. Gogoi, Nano-Structures and Nano-Objects, 26, 100704 (2021); https://doi.org/10.1016/j.nanoso.2021.100704
X. Cai, J. He, L. Chen, K. Chen, Y. Li, K. Zhang, Z. Jin, J. Liu, C. Wang, X. Wang, L. Kong and J. Liu, Chemosphere, 171, 192 (2017); https://doi.org/10.1016/j.chemosphere.2016.12.073
P. Choudhary, A. Bahuguna, A. Kumar, S.S. Dhankhar, C.M. Nagaraja and V. Krishnan, Green Chem., 22, 5084 (2020); https://doi.org/10.1039/D0GC01123A
Q. Gu, Z. Gao and C. Xue, Small, 12, 3543 (2016); https://doi.org/10.1002/smll.201600181
Y. Wang, H. Wang, F. Chen, F. Cao, X. Zhao, S. Meng and Y. Cui, Appl. Catal. B, 206, 417 (2017); https://doi.org/10.1016/j.apcatb.2017.01.041
S. Liu, D. Li, H. Sun, H.M. Ang, M.O. Tadé and S. Wang, J. Colloid Interface Sci., 468, 176 (2016); https://doi.org/10.1016/j.jcis.2016.01.051
D. Fu, G. Han, F. Liu, Y. Xiao, H. Wang, R. Liu and C. Liu, Mater. Sci. Semicond. Process., 27, 966 (2014); https://doi.org/10.1016/j.mssp.2014.08.004