Copyright (c) 2023 DR.JAGADEESHA KANDIGOWDA
This work is licensed under a Creative Commons Attribution 4.0 International License.
Computational Analysis of Excited State Intramolecular Hydrogen Atom Transfer and Microsolvation Studies on 8-Acetyl-7-hydroxy-4-methylcoumarin using DFT and TDDFT
Corresponding Author(s) : DR.JAGADEESHA KANDIGOWDA
Asian Journal of Chemistry,
Vol. 35 No. 10 (2023): Vol 35 Issue 10, 2023
Abstract
The computational calculations were carried out on 8-acetyl-7-hydroxy-4-methyl coumarin (AHM) and its water complex AHM+(H2O)4- [AHMH] at ground and excited states by employing density functional theory (DFT)/specific state time-dependent density functional theory (SS-TDDFT). In AHM and AHMH molecules, there is an intramolecular hydrogen bond between hydroxyl group and acetyl group along with inter-molecular hydrogen bonds in the hydrated molecule. The computational studies of molecular structural parameters, molecular electrostatic potential, natural bond orbital (NBO) analysis, the molecular orbital’s and UV-Vis spectra of both the molecules under polar solvents were explored by B3LYP/cc-pVDZ/PCM/EFP1 method. The intramolecular hydrogen atom transpired between hydroxyl to acetyl group in AHM/AHMH molecules from S0→S1 state but not in S0→S3/S0→S2 states even though the S3/S2 states have significant oscillation strengths. This indicates that intramolecular chage transfer (ICT) occurs within the molecules and it confirmed using potential energy surface (PES) scan studies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Miao and Y. Shi, J. Comput. Chem., 32, 3058 (2011); https://doi.org/10.1002/jcc.21888
- M. Ramegowda, New J. Chem., 37, 2648 (2013); https://doi.org/10.1039/c3nj00446e
- M. Ramegowda, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 99 (2015); https://doi.org/10.1016/j.saa.2014.08.017
- M. Zhang, B. Ren, Y. Wang and C. Zhao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 101, 191 (2013); https://doi.org/10.1016/j.saa.2012.09.045
- M. Ramegowda, K.N. Ranjitha and T.N. Deepika, New J. Chem., 40, 2211 (2016); https://doi.org/10.1039/C5NJ02917A
- M.S. Gordon, M.A. Freitag, P. Bandyopadhyay, J.H. Jensen, V. Kairys and W.J. Stevens, J. Phys. Chem. A, 105, 293 (2001); https://doi.org/10.1021/jp002747h
- Y.L. Ramu, K. Jagadeesha, T. Shivalingaswamy and M. Ramegowda, Chem. Phys. Lett., 739, 137030 (2020); https://doi.org/10.1016/j.cplett.2019.137030
- S. Sardari, Y. Mori, K. Horita, R.G. Micetich, S. Nishibe and M. Daneshtalab, Bioorg. Med. Chem., 7, 1933 (1999); https://doi.org/10.1016/S0968-0896(99)00138-8
- M. Savarese, P.A. Netti, C. Adamo, N. Rega and I. Ciofini, J. Phys. Chem. B, 117, 16165 (2013); https://doi.org/10.1021/jp406301p
- K. Jagadeesha, Y.L. Ramu, M. Ramegowda and N.K. Lokanath, Spectrochim. Acta A Mol. Biomol. Spectrosc., 208, 325 (2019); https://doi.org/10.1016/j.saa.2018.10.015
- K.L. Han and G.J. Zhao, Hydrogen Bonding Transfer in the Excited State, John Wiley & Sons Ltd.: NewYork (2011).
- R.B. Arora and C.N. Mathur, Br. J. Pharmacol. Chemother., 20, 29 (1963); https://doi.org/10.1111/j.1476-5381.1963.tb01294.x
- R. Vázquez, M.E. Riveiro, M. Vermeulen, E. Alonso, C. Mondillo, G. Facorro, L. Piehl, N. Gómez, A. Moglioni, N. Fernández, A. Baldi, C. Shayo and C. Davio, Bioorg. Med. Chem., 20, 5537 (2012); https://doi.org/10.1016/j.bmc.2012.07.043
- Q. Zhang, J. Zhai, Y. Zhang, Y. Liu, L. Wang, S.-B. Li, D.-Z. Liao and G.-L. Wang, Transition Met. Chem., 25, 93 (2000); https://doi.org/10.1023/A:1007036718734
- M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek and G.R. Hutchison, J. Cheminform., 4, 17 (2012); https://doi.org/10.1186/1758-2946-4-17
- E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, C.R. Landis and F. Weinhold, Theoretical Chemistry Institute, Universityof Wisconsin, Madison, WI (2013).
- M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis and J.A. Montgomery, J. Comput. Chem., 14, 1347 (1993); https://doi.org/10.1002/jcc.540141112
- M.S. Gordon and M.W. Schmidt, Advances in Electronic Structure Theory: GAMESS A Decade Later, In: Theory Applications of Computational Chemistry, the First Forty Years, Elsevier, Amsterdam, Chap. 4, pp. 1167-1189 (2005); https://doi.org/10.1016/B978-044451719-7/50084-6
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- A.D. Becke, Phys. Rev. A Gen. Phys., 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
- T.H. Dunning Jr., J. Chem. Phys., 90, 1007 (1989); https://doi.org/10.1063/1.456153
- R. G. Parr and W. Yang, M, International Academy of Quantum Molecular Science, vol 3. Springer,11(1980); https://doi.org/10.1007/978-94-009-9027-2_2
- K. Kim and K.D. Jordan, J. Phys. Chem., 98, 10089 (1994); https://doi.org/10.1021/j100091a024
- P.J. Stephens, F.J. Devlin, C.F. Chabalowski and M.J. Frisch, J. Phys. Chem., 98, 11623 (1994); https://doi.org/10.1021/j100096a001
- T.R. Cundari and W.J. Stevens, J. Chem. Phys., 98, 5555 (1993); https://doi.org/10.1063/1.464902
- P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 299 (1985); https://doi.org/10.1063/1.448975
- S. Tokura, T. Sato, T. Tsuneda, T. Nakajima and K. Hirao, J. Comput. Chem., 29, 1187 (2008); https://doi.org/10.1002/jcc.20871
- M. Chiba, T. Tsuneda and K. Hirao, Chem. Phys. Lett., 420, 391 (2006); https://doi.org/10.1016/j.cplett.2006.01.015
- T.A. Halgren, J. Comput. Chem., 20, 720 (1999); https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X
- I. Adamovic, M.A. Freitag and M.S. Gordon, J. Chem. Phys., 118, 6725 (2015); https://doi.org/10.1063/1.1559912
- F. Furche and R. Ahlrichs, J. Chem. Phys., 121, 12772 (2004); https://doi.org/10.1063/1.1824903
- H. Li, C.S. Pomelli and J.H. Jensen, Theor. Chem. Acc., 109, 71 (2003); https://doi.org/10.1007/s00214-002-0427-x
- J. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 105, 9982 (1996); https://doi.org/10.1063/1.472933
- V.F. Traven, L.I. Vorobjeva, T.A. Chibisova, E.A. Carberry and N.J. Beyer, Can. J. Chem., 75, 365 (1997); https://doi.org/10.1139/v97-042
References
M. Miao and Y. Shi, J. Comput. Chem., 32, 3058 (2011); https://doi.org/10.1002/jcc.21888
M. Ramegowda, New J. Chem., 37, 2648 (2013); https://doi.org/10.1039/c3nj00446e
M. Ramegowda, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 99 (2015); https://doi.org/10.1016/j.saa.2014.08.017
M. Zhang, B. Ren, Y. Wang and C. Zhao, Spectrochim. Acta A Mol. Biomol. Spectrosc., 101, 191 (2013); https://doi.org/10.1016/j.saa.2012.09.045
M. Ramegowda, K.N. Ranjitha and T.N. Deepika, New J. Chem., 40, 2211 (2016); https://doi.org/10.1039/C5NJ02917A
M.S. Gordon, M.A. Freitag, P. Bandyopadhyay, J.H. Jensen, V. Kairys and W.J. Stevens, J. Phys. Chem. A, 105, 293 (2001); https://doi.org/10.1021/jp002747h
Y.L. Ramu, K. Jagadeesha, T. Shivalingaswamy and M. Ramegowda, Chem. Phys. Lett., 739, 137030 (2020); https://doi.org/10.1016/j.cplett.2019.137030
S. Sardari, Y. Mori, K. Horita, R.G. Micetich, S. Nishibe and M. Daneshtalab, Bioorg. Med. Chem., 7, 1933 (1999); https://doi.org/10.1016/S0968-0896(99)00138-8
M. Savarese, P.A. Netti, C. Adamo, N. Rega and I. Ciofini, J. Phys. Chem. B, 117, 16165 (2013); https://doi.org/10.1021/jp406301p
K. Jagadeesha, Y.L. Ramu, M. Ramegowda and N.K. Lokanath, Spectrochim. Acta A Mol. Biomol. Spectrosc., 208, 325 (2019); https://doi.org/10.1016/j.saa.2018.10.015
K.L. Han and G.J. Zhao, Hydrogen Bonding Transfer in the Excited State, John Wiley & Sons Ltd.: NewYork (2011).
R.B. Arora and C.N. Mathur, Br. J. Pharmacol. Chemother., 20, 29 (1963); https://doi.org/10.1111/j.1476-5381.1963.tb01294.x
R. Vázquez, M.E. Riveiro, M. Vermeulen, E. Alonso, C. Mondillo, G. Facorro, L. Piehl, N. Gómez, A. Moglioni, N. Fernández, A. Baldi, C. Shayo and C. Davio, Bioorg. Med. Chem., 20, 5537 (2012); https://doi.org/10.1016/j.bmc.2012.07.043
Q. Zhang, J. Zhai, Y. Zhang, Y. Liu, L. Wang, S.-B. Li, D.-Z. Liao and G.-L. Wang, Transition Met. Chem., 25, 93 (2000); https://doi.org/10.1023/A:1007036718734
M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek and G.R. Hutchison, J. Cheminform., 4, 17 (2012); https://doi.org/10.1186/1758-2946-4-17
E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, C.R. Landis and F. Weinhold, Theoretical Chemistry Institute, Universityof Wisconsin, Madison, WI (2013).
M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis and J.A. Montgomery, J. Comput. Chem., 14, 1347 (1993); https://doi.org/10.1002/jcc.540141112
M.S. Gordon and M.W. Schmidt, Advances in Electronic Structure Theory: GAMESS A Decade Later, In: Theory Applications of Computational Chemistry, the First Forty Years, Elsevier, Amsterdam, Chap. 4, pp. 1167-1189 (2005); https://doi.org/10.1016/B978-044451719-7/50084-6
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
A.D. Becke, Phys. Rev. A Gen. Phys., 38, 3098 (1988); https://doi.org/10.1103/PhysRevA.38.3098
T.H. Dunning Jr., J. Chem. Phys., 90, 1007 (1989); https://doi.org/10.1063/1.456153
R. G. Parr and W. Yang, M, International Academy of Quantum Molecular Science, vol 3. Springer,11(1980); https://doi.org/10.1007/978-94-009-9027-2_2
K. Kim and K.D. Jordan, J. Phys. Chem., 98, 10089 (1994); https://doi.org/10.1021/j100091a024
P.J. Stephens, F.J. Devlin, C.F. Chabalowski and M.J. Frisch, J. Phys. Chem., 98, 11623 (1994); https://doi.org/10.1021/j100096a001
T.R. Cundari and W.J. Stevens, J. Chem. Phys., 98, 5555 (1993); https://doi.org/10.1063/1.464902
P.J. Hay and W.R. Wadt, J. Chem. Phys., 82, 299 (1985); https://doi.org/10.1063/1.448975
S. Tokura, T. Sato, T. Tsuneda, T. Nakajima and K. Hirao, J. Comput. Chem., 29, 1187 (2008); https://doi.org/10.1002/jcc.20871
M. Chiba, T. Tsuneda and K. Hirao, Chem. Phys. Lett., 420, 391 (2006); https://doi.org/10.1016/j.cplett.2006.01.015
T.A. Halgren, J. Comput. Chem., 20, 720 (1999); https://doi.org/10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X
I. Adamovic, M.A. Freitag and M.S. Gordon, J. Chem. Phys., 118, 6725 (2015); https://doi.org/10.1063/1.1559912
F. Furche and R. Ahlrichs, J. Chem. Phys., 121, 12772 (2004); https://doi.org/10.1063/1.1824903
H. Li, C.S. Pomelli and J.H. Jensen, Theor. Chem. Acc., 109, 71 (2003); https://doi.org/10.1007/s00214-002-0427-x
J. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 105, 9982 (1996); https://doi.org/10.1063/1.472933
V.F. Traven, L.I. Vorobjeva, T.A. Chibisova, E.A. Carberry and N.J. Beyer, Can. J. Chem., 75, 365 (1997); https://doi.org/10.1139/v97-042