This work is licensed under a Creative Commons Attribution 4.0 International License.
Phytochemicals from Medicinal Plants as Antiviral Agents: Recent Trends and Advancements
Corresponding Author(s) : Hardeep Singh Tuli
Asian Journal of Chemistry,
Vol. 35 No. 6 (2023): Vol 35 Issue 6, 2023
Abstract
Many compounds from therapeutic plants have been studied as potential antiviral agents. To control the spread, phytochemicals are employed to decrease viral copy production. This evaluation will be helpful to the scientific community’s investigations into microbes and their infection. Other common viruses that are impacted by the phytochemicals of medicinal plants include herpes simplex, DNA viruses, poliovirus, cytomegalovirus, influenza, para-influenza type 3 and herpes simplex. The root of the plant is the most important and effective part for manufacturing strong phytochemicals. This review provides an overview of a number of phytochemicals, their synthesis and their medicinal qualities, which offer a wide range of therapeutic effects for the treatment of various viral infections. The phytochemical and pharmacological properties of these drugs are the subject of research aimed at identifying the essential chemical constituents and substantiating the efficacy and safety of these claims. Thus, there is promise for the future of medicinal plants because they have the potential to outperform chemical-based allopathic treatments.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.E. Baker, A.S. Mahmud, I.F. Miller, M. Rajeev, F. Rasambainarivo, B.L. Rice, S. Takahashi, A.J. Tatem, C.E. Wagner, A. Wesolowski, L.-F. Wang and C.J.E. Metcalf, Nat. Rev. Microbiol., 20, 193 (2022); https://doi.org/10.1038/s41579-021-00639-z
- M.C. Leoni, A. Ustianowski, H. Farooq and J.E. Arends, Infect. Dis. Ther., 7, 407 (2018); https://doi.org/10.1007/s40121-018-0210-5
- J. Louten, Virus Transmission and Epidemiology. In: Essential Human Virology. Elsevier, pp. 71-92 (2016); https://doi.org/10.1016/B978-0-12-800947-5.00005-3
- S.S. Gautam, C.S. Gautam, V.K. Garg and H. Singh, Expert Rev. Clin. Pharmacol., 13, 1183 (2020); https://doi.org/10.1080/17512433.2020.1832889
- S. Kumar, C. Devi, S. Sarkar, V.K. Garg, P. Choudhary, M. Chopra, V. Sharma and R. Prakash, Convalescent Plasma: An Evidence-Based Old Therapy to Treat Novel Coronavirus Patients. In: Biotechnology to Combat COVID-19, IntechOpen, pp. 1-29 (2021).
- P. Gisondi, S. PIaserico, C. Bordin, M. Alaibac, G. Girolomoni and L. Naldi, J. Eur. Acad. Dermatol. Venereol., 34, 2499 (2020); https://doi.org/10.1111/jdv.16774
- L. Nováková, J. Pavlík, L. Chrenková, O. Martinec and L. Èervený, J. Pharm. Biomed. Anal., 147, 378 (2018); https://doi.org/10.1016/j.jpba.2017.07.003
- F. Krammer, G.J.D. Smith, R.A.M. Fouchier, M. Peiris, K. Kedzierska, P.C. Doherty, P. Palese, M.L. Shaw, J. Treanor, R.G. Webster and A. García-Sastre, Nat. Rev. Dis. Primers, 4, 3 (2018); https://doi.org/10.1038/s41572-018-0002-y
- Y.H. Kim, K.J. Hong, H. Kim and J.H. Nam, Rev. Med. Virol., 32, e2243 (2022); https://doi.org/10.1002/rmv.2243
- Krisdiyanto, R.A.B.R. Ghazilla, M. Azuddin, M.K.F.B.A. Hairuddin, M.A. Muflikhun, N. Risdiana and E. Afifuddin, Medicine, 101, E31812 (2022); https://doi.org/10.1097/MD.0000000000031812
- S.D. Seth, S. Singh and M. Maulik, Indian Regulatory Framework, In: Global Clinical Trials Effective Implementation and Management, Elsevier, Chap. 6, pp. 89–118 (2011); https://doi.org/10.1016/B978-0-12-381537-8.10006-8
- D. Stan, A.M. Enciu, A.L. Mateescu, A.C. Ion, A.C. Brezeanu, D. Stan and C. Tanase, Front. Pharmacol., 12, 723233 (2021); https://doi.org/10.3389/fphar.2021.723233
- J.S. Mani, J.B. Johnson, J.C. Steel, D.A. Broszczak, P.M. Neilsen, K.B. Walsh and M. Naiker, Virus Res., 284, 197989 (2020); https://doi.org/10.1016/j.virusres.2020.197989
- N.R. Farnsworth, J. Pharm. Sci., 55, 225 (1966); https://doi.org/10.1002/jps.2600550302
- Y.A. Attia, M.M. Alagawany, M.R. Farag, F.M. Alkhatib, A.F. Khafaga, A.M.E. Abdel-Moneim, K.A. Asiry, N.M. Mesalam, M.E. Shafi, M.A. Al-Harthi and M.E. Abd El-Hack, Front. Vet. Sci., 7, 573159 (2020); https://doi.org/10.3389/fvets.2020.573159
- F.S. Li and J.K. Weng, Nat. Plants, 3, 17109 (2017); https://doi.org/10.1038/nplants.2017.109
- Tannupriya and V.K. Garg, Urine, 5, 13 (2023); https://doi.org/10.1016/j.urine.2023.04.001
- W. Hussain, K.S. Haleem, I. Khan, I. Tauseef, S. Qayyum, B. Ahmed and M.N. Riaz, Future Virol., 12, 299 (2017); https://doi.org/10.2217/fvl-2016-0110
- R. Kaur, P. Sharma, G.K. Gupta, F. Ntie-Kang and D. Kumar, Molecules, 25, 2070 (2020); https://doi.org/10.3390/molecules25092070
- S. Singh and A. Singh, Int. J. Pharm. Sci. Rev. Res., 48, 1 (2018).
- K. Das, P. Das, M. Almuqbil, S.M.B. Asdaq, K. Nikhil, K. Preethi, N.F. Alomar, A. Angelinkiruba, R.M. Al harbi, W.A. Al Abdullah, S.M. Alshehri, Y.A. Laghabi, A.R. Alsaegh, Y. Mohzari, S. Alshehri, B.A. Mannasaheb and S.I. Rabbani, J. King Saud Univ. Sci., 35, 102534 (2023); https://doi.org/10.1016/j.jksus.2022.102534
- D.S. Dimitrov, Nat. Rev. Microbiol., 2, 109 (2004); https://doi.org/10.1038/nrmicro817
- J.M. Casasnovas, Subcell. Biochem., 68, 441 (2013); https://doi.org/10.1007/978-94-007-6552-8_15
- D. Bhella, Philos. Trans. R. Soc. Lond. B Biol. Sci., 370, 20140035 (2015); https://doi.org/10.1098/rstb.2014.0035
- M.S. Maginnis, J. Mol. Biol., 430, 2590 (2018); https://doi.org/10.1016/j.jmb.2018.06.024
- J. Grove and M. Marsh, J. Cell Biol., 195, 1071 (2011); https://doi.org/10.1083/jcb.201108131
- D. Chattopadhyay, M.C. Sarkar, T. Chatterjee, R.S. Dey, S. Chakraborti, P. Bag and M.T.H. Khan, N. Biotechnol., 25, 347 (2009); https://doi.org/10.1016/j.nbt.2009.03.007
- T. Ghosh, K. Chattopadhyay, M. Marschall, P. Karmakar, P. Mandal and B. Ray, Glycobiology, 19, 2 (2009); https://doi.org/10.1093/glycob/cwn092
- M.T.H. Khan, A. Ather, K.D. Thompson and R. Gambari, Antiviral Res., 67, 107 (2005); https://doi.org/10.1016/j.antiviral.2005.05.002
- J. Balzarini, Nat. Rev. Microbiol., 5, 583 (2007); https://doi.org/10.1038/nrmicro1707
- S. Pilotto, T. Fouqueau, N. Lukoyanova, C. Sheppard, S. Lucas-Staat, L.M. Díaz-Santín, D. Matelska, D. Prangishvili, A.C.M. Cheung and F. Werner, Nat. Commun., 12, 5523 (2021); https://doi.org/10.1038/s41467-021-25666-5
- M. Koehler, M. Delguste, C. Sieben, L. Gillet and D. Alsteens, Annu. Rev. Virol., 7, 143 (2020); https://doi.org/10.1146/annurev-virology-122019-070025
- T.J. Huang, Y.C. Tsai, S.Y. Chiang, G.J. Wang, Y.C. Kuo, Y.C. Chang, Y.-Y. Wu and Y.-C. Wu, Virus Res., 192, 16 (2014); https://doi.org/10.1016/j.virusres.2014.07.015
- Y.C. Kuo, L.C. Lin, W.J. Tsai, C.J. Chou, S.H. Kung and Y.H. Ho, Antimicrob. Agents Chemother., 46, 2854 (2002); https://doi.org/10.1128/AAC.46.9.2854-2864.2002
- J. Liu, L. Shao, P. Trang, Z. Yang, M. Reeves, X. Sun, G.-P. Vu, Y. Wang, H. Li, C. Zheng, S. Lu and F. Liu, Sci. Rep., 6, 27068 (2016); https://doi.org/10.1038/srep27068
- H.J. Choi, J.H. Song, K.S. Park and D.H. Kwon, Eur. J. Pharm. Sci., 37, 329 (2009); https://doi.org/10.1016/j.ejps.2009.03.002
- T.S. Wahyuni, A. Widyawaruyanti, M.I. Lusida, A. Fuad, Soetjipto, H. Fuchino, N. Kawahara, Y. Hayashi, C. Aoki and H. Hotta, Fitoterapia, 99, 276 (2014); https://doi.org/10.1016/j.fitote.2014.10.011
- A. Bauer and M. Brönstrup, Nat. Prod. Rep., 31, 35 (2014); https://doi.org/10.1039/C3NP70058E
- J.J. Xu, X. Wu, M.M. Li, G.Q. Li, Y.T. Yang, H.J. Luo, W.-H. Huang, H.Y. Chung, W.-C. Ye, G.-C. Wang and Y.-L. Li, J. Agric. Food Chem., 62, 2182 (2014); https://doi.org/10.1021/jf404310y
- S.C. Bachar, K. Mazumder, R. Bachar, A. Aktar and M. Al Mahtab, Front. Pharmacol., 12, 732891 (2021); https://doi.org/10.3389/fphar.2021.732891
- S. Kumar, R. Saini, P. Suthar, V. Kumar and R. Sharma, Plant Secondary Metabolites: Their Food and Therapeutic Importance. In: Plant Secondary Metabolites. Springer, Singapore, pp. 371-413 (2022); https://doi.org/10.1007/978-981-16-4779-6_12
- G. Guerriero, R. Berni, J.A. Muñoz-Sanchez, F. Apone, E.M. Abdel-Salam, A.A. Qahtan, A. Alatar, C. Cantini, G. Cai, J.-F. Hausman, K. Siddiqui, S. Hernández-Sotomayor and M. Faisal, Genes, 9, 309 (2018); https://doi.org/10.3390/genes9060309
- F. Bourgaud, A. Gravot, S. Milesi and E. Gontier, Plant Sci., 161, 839 (2001); https://doi.org/10.1016/S0168-9452(01)00490-3
- Z.Z. Zhang, X.X. Li, Y.N. Chu, M.X. Zhang, Y.Q. Wen, C.Q. Duan and Q.-H. Pan, Plant Physiol. Biochem., 57, 74 (2012); https://doi.org/10.1016/j.plaphy.2012.05.005
- A.O. Chatzivasileiou, V. Ward, S.M.B. Edgar and G. Stephanopoulos, Proc. Natl. Acad. Sci. USA, 116, 506 (2019); https://doi.org/10.1073/pnas.1812935116
- H. Karlic and F. Varga, Mevalonate pathway. In: Encyclopedia of Cancer. Academic Press, pp. 445-457 (2017); https://doi.org/10.1016/B978-0-12-801238-3.65000-6
- M. Ishida, M. Nagata, T. Ohara, T. Kakizaki, K. Hatakeyama and T. Nishio, Breed. Sci., 62, 63 (2012); https://doi.org/10.1270/jsbbs.62.63
- M.K. Lee, J.H. Chun, D.H. Byeon, S.O. Chung, S.U. Park, S. Park, M.V. Arasu, N.A. Al-Dhabi, Y.-P. Lim and S.-J. Kim, Lebensm. Wiss. Technol., 58, 93 (2014); https://doi.org/10.1016/j.lwt.2014.03.001
- J. Clayden, N. Greeves and S. Warren, Organic Chemistry, Oxford University Press (2012).
- M. Chen, C. Yao, Y. Qin, X. Cui, P. Li, Z. Ji, L. Lin, H. Wu, Z. Zhou, Y. Gui, Z. Li and F. Gao, Signal Transduct. Target. Ther., 7, 1 (2022); https://doi.org/10.1038/s41392-021-00710-4
- S. Pandey, G. Malviya and M. Chottova Dvorakova, Int. J. Mol. Sci., 22, 8828 (2021); https://doi.org/10.3390/ijms22168828
- T.H. Rider, C.E. Zook, T.L. Boettcher, S.T. Wick, J.S. Pancoast and B.D. Zusman, PLoS One, 6, e22572 (2011); https://doi.org/10.1371/journal.pone.0022572
- Y.C.J. Lee, J.D. Shirkey, J. Park, K. Bisht and A.J. Cowan, BioDesign Res., 2022, 2022/9898241 (2022); https://doi.org/10.34133/2022/9898241
- G. Agarwal and R. Gabrani, Int. J. Pept. Res. Ther., 27, 149 (2021); https://doi.org/10.1007/s10989-020-10072-0
- L.Y. Chia, P.V. Kumar, M.A.A. Maki, G. Ravichandran and S. Thilagar, Int. J. Pept. Res. Ther., 29, 7 (2023); https://doi.org/10.1007/s10989-022-10478-y
- E. Teissier, F. Penin and E.I. Pécheur, Molecules, 16, 221 (2010); https://doi.org/10.3390/molecules16010221
- M. Divyashree, M.K. Mani, D. Reddy, R. Kumavath, P. Ghosh, V. Azevedo and D. Barh, Protein Pept. Lett., 27, 120 (2020); https://doi.org/10.2174/0929866526666190925152957
- S. Skalickova, Z. Heger, L. Krejcova, V. Pekarik, K. Bastl, F. Kostolansky, J. Janda, E. Vareckova, O. Zitka, V. Adam and R. Kizek, Viruses, 7, 5428 (2015); https://doi.org/10.3390/v7102883
- P. Bogomolov, A. Alexandrov, N. Voronkova, M. Macievich, K. Kokina, M. Petrachenkova, T. Lehr, F.A. Lempp, H. Wedemeyer, M. Haag, M. Schwab, W.E. Haefeli, A. Blank and S. Urban, J. Hepatol., 65, 490 (2016); https://doi.org/10.1016/j.jhep.2016.04.016
- D. Yu, X. Ding, Z. Liu, X. Wu, Y. Zhu, H. Wei, H. Chong, S. Cui and Y. He, J. Biol. Chem., 293, 12703 (2018); https://doi.org/10.1074/jbc.RA118.003538
- H. Jenssen, Viruses, 1, 939 (2009); https://doi.org/10.3390/v1030939
- F. Abedinifar, E. Babazadeh Rezaei, M. Biglar, B. Larijani, H. Hamedifar, S. Ansari and M. Mahdavi, Mol. Divers., 25, 2571 (2021); https://doi.org/10.1007/s11030-020-10128-9
- R. Shah and P.K. Verma, Chem. Cent. J., 12, 137 (2018); https://doi.org/10.1186/s13065-018-0511-5
- D. Gramec, L. Peterlin Mašiè and M. Sollner Dolenc, Chem. Res. Toxicol., 27, 1344 (2014); https://doi.org/10.1021/tx500134g
- D. Gramec, L. Peterlin-Mašic and M. Sollner-Dolenc, Chem. Res. Toxicol., 27, 1344 (2014); https://doi.org/10.1021/tx500134g
- S. Tewtrakul, S. Subhadhirasakul, S. Cheenpracha and C. Karalai, Phytother. Res., 21, 1092 (2007); https://doi.org/10.1002/ptr.2252
- J.B. Hudson, L. Harris, A. Teeple and G.H.N. Towers, Antiviral Res., 20, 33 (1993); https://doi.org/10.1016/0166-3542(93)90057-P
- D. Kang, X. Ding, G. Wu, Z. Huo, Z. Zhou, T. Zhao, D. Feng, Z. Wang, Y. Tian, D. Daelemans, E. De Clercq, C. Pannecouque, P. Zhan and X. Liu, ACS Med. Chem. Lett., 8, 1188 (2017); https://doi.org/10.1021/acsmedchemlett.7b00361
- Z. Wang, D. Kang, M. Chen, G. Wu, D. Feng, T. Zhao, Z. Zhou, Z. Huo, L. Jing, X. Zuo, D. Daelemans, E. De Clercq, C. Pannecouque, P. Zhan and X. Liu, Chem. Biol. Drug Des., 92, 2009 (2018); https://doi.org/10.1111/cbdd.13373
- R. Amorim, M.D.F. de Meneses, J.C. Borges, L.C. da Silva Pinheiro, L.A. Caldas, C.C. Cirne-Santos, M.V.P. de Mello, A.M.T. de Souza, H.C. Castro, I.C.N. de Palmer Paixão, R.M. Campos, I.E. Bergmann, V. Malirat, A.M.R. Bernardino, M.A. Rebello and D.F. Ferreira, Arch. Virol., 162, 1577 (2017); https://doi.org/10.1007/s00705-017-3261-0
- P. Caffrey, S. Lynch, E. Flood, S. Finnan and M. Oliynyk, Chem. Biol., 8, 713 (2001); https://doi.org/10.1016/S1074-5521(01)00046-1
- M. Baginski and J. Czub, Curr. Drug Metab., 10, 459 (2009); https://doi.org/10.2174/138920009788898019
- R. Laniado-Laborín and M.N. Cabrales-Vargas, Rev. Iberoam. Micol., 26, 223 (2009); https://doi.org/10.1016/j.riam.2009.06.003
- B. Malewicz, M. Momsen and H.M. Jenkin, Antimicrob. Agents Chemother., 23, 119 (1983); https://doi.org/10.1128/AAC.23.1.119
- B. Malewicz, M. Momsen, H.M. Jenkin and E. Borowski, Antimicrob. Agents Chemother., 25, 772 (1984); https://doi.org/10.1128/AAC.25.6.772
- N.Z. Abd Wahab, A. Azizul and N. Ibrahim, Iran. J. Microbiol., 12, 460 (2020); https://doi.org/10.18502/ijm.v12i5.4608
- L. Almagro, F. Fernández-Pérez and M.A. Pedreño, Molecules, 20, 2973 (2015); https://doi.org/10.3390/molecules20022973
- N.R. Farnsworth, G.H. Svoboda and R.N. Blomster, J. Pharm. Sci., 57, 2174 (1968); https://doi.org/10.1002/jps.2600571235
- S. Faisal, S.L. Badshah, B. Kubra, A.H. Emwas and M. Jaremko, Nat. Prod. Bioprospect., 13, 4 (2023); https://doi.org/10.1007/s13659-022-00366-9
- T. Behl, G. Rocchetti, S. Chadha, G. Zengin, S. Bungau, A. Kumar, V. Mehta, M.S. Uddin, G. Khullar, D. Setia, S. Arora, K.I. Sinan, G. Ak, P. Putnik, M. Gallo and D. Montesano, Pharmaceuticals, 14, 381 (2021); https://doi.org/10.3390/ph14040381
- P.J. Houghton, T.Z. Woldemariam, A.I. Khan, A. Burke and N. Mahmood, Antiviral Res., 25, 235 (1994); https://doi.org/10.1016/0166-3542(94)90006-X
- C.E. Cecil, J.M. Davis, N.B. Cech and S.M. Laster, Int. Immunopharmacol., 11, 1706 (2011); https://doi.org/10.1016/j.intimp.2011.06.002
- G.B. Zhang, B. Zhang, X.X. Zhang and F.H. Bing, Acta Virol., 57, 85 (2013); https://doi.org/10.4149/av_2013_01_85
- B. Özçelik, M. Kartal and I. Orhan, Pharm. Biol., 49, 396 (2011); https://doi.org/10.3109/13880209.2010.519390
- Ö. Guclu-Ustundag and G. Mazza, Crit. Rev. Food Sci. Nutr., 47, 231 (2007); https://doi.org/10.1080/10408390600698197
- C.M.O. Simões, M. Amoros and L. Girre, Phytother. Res., 13, 323 (1999); https://doi.org/10.1002/(SICI)1099-1573(199906)13:4<323::AID-PTR448>3.0.CO;2-C
- S.D. Desai, D.G. Desai and H. Kaur, Pharm. Times, 41, 13 (2009).
- A. Estévez-Braun and A.G. González, Nat. Prod. Rep., 14, 465 (1997); https://doi.org/10.1039/np9971400465
- I. Kostova, S. Bhatia, P. Grigorov, S. Balkansky, V. S. Parmar, A. K. Prasad and L. Saso, Curr. Med. Chem., 18, 3929 (2012); https://doi.org/10.2174/092986711803414395
- M.Z. Hassan, H. Osman, M.A. Ali and M.J. Ahsan, Eur. J. Med. Chem., 123, 236 (2016); https://doi.org/10.1016/j.ejmech.2016.07.056
- I. Kostova, Curr. HIV Res., 4, 347 (2006); https://doi.org/10.2174/157016206777709393
- H.S. Tuli, H. Mistry, G. Kaur, D. Aggarwal, V.K. Garg, S. Mittal, M.B. Yerer, K. Sak and M.A. Khan, Anticancer. Agents Med. Chem., 22, 499 (2022); https://doi.org/10.2174/1871520621666211119085834
- H.S. Tuli, V.K. Garg, J.K. Mehta, G. Kaur, R.K. Mohapatra, K. Dhama, K. Sak, A. Kumar, M. Varol, D. Aggarwal, U. Anand, J. Kaur, R. Gillan, G. Sethi and A. Bishayee, OncoTargets Ther., 15, 1419 (2022); https://doi.org/10.2147/OTT.S366630
- I. Ignat, I. Volf and V.I. Popa, Food Chem., 126, 1821 (2011); https://doi.org/10.1016/j.foodchem.2010.12.026
- D.E. Stevenson and R.D. Hurst, Cell. Mol. Life Sci., 64, 2900 (2007); https://doi.org/10.1007/s00018-007-7237-1
- J.G. Handique and J.B. Baruah, React. Funct. Polym., 52, 163 (2002); https://doi.org/10.1016/S1381-5148(02)00091-3
- A. Kamboj and A. Saluja, Pharmacogn. Rev., 3, 364 (2009).
- A. Kamboj, A.K. Saluja, M. Kumar and P. Atri, J. Pharm. Res., 5, 2402 (2012).
- S.C. Sahu, J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 20, 61 (2002); https://doi.org/10.1081/GNC-120005388
- M.A. Vazquez-Prieto and R.M. Miatello, Mol. Aspects Med., 31, 540 (2010); https://doi.org/10.1016/j.mam.2010.09.009
- R. Rouf, S.J. Uddin, D.K. Sarker, M.T. Islam, E.S. Ali, J.A. Shilpi, L. Nahar, E. Tiralongo and S.D. Sarker, Trends Food Sci. Technol., 104, 219 (2020); https://doi.org/10.1016/j.tifs.2020.08.006
- W.D. MacRae and G.H.N. Towers, Phytochemistry, 23, 1207 (1984); https://doi.org/10.1016/S0031-9422(00)80428-8
- H. Adlercreutz, Crit. Rev. Clin. Lab. Sci., 44, 483 (2007); https://doi.org/10.1080/10408360701612942
- Y. Liu, Y. Yang, S. Tasneem, N. Hussain, M. Daniyal, H. Yuan, Q. Xie, B. Liu, J. Sun, Y. Jian, B. Li, S. Chen and W. Wang, Molecules, 23, 2147 (2018); https://doi.org/10.3390/molecules23092147
- D. Barker, Molecules, 24, 1424 (2019); https://doi.org/10.3390/molecules24071424
- Q. Cui, R. Du, M. Liu and L. Rong, Molecules, 25, 183 (2020); https://doi.org/10.3390/molecules25010183
- E. Pichersky and R.A. Raguso, New Phytol., 220, 692 (2018); https://doi.org/10.1111/nph.14178
- W. Yang, X. Chen, Y. Li, S. Guo, Z. Wang and X. Yu, Nat. Prod. Commun., 15, 1 (2020); https://doi.org/10.1177/1934578X20903
- J. Matejic, Z. Šarac and V. Randelovic, Biotechnol. Biotechnol. Equip., 24(sup1), 95 (2010); https://doi.org/10.1080/13102818.2010.10817819
- A. Hazafa, K.U. Rehman, N. Jahan and Z. Jabeen, Nutr. Cancer, 72, 386 (2020); https://doi.org/10.1080/01635581.2019.1637006
- A.A. Al-Karmalawy, M.M. Farid, A. Mostafa, A.Y. Ragheb, M. Shehata, S.H. Mahmoud, N.M.A. Shama, M. GabAllah, G. Mostafa-Hedeab and M.M. Marzouk, Molecules, 26, (2021); https://doi.org/10.3390/molecules26216559
- S.L. Badshah, S. Faisal, A. Muhammad, B.G. Poulson, A.H. Emwas and M. Jaremko, Biomed. Pharmacother., 140, 111596 (2021); https://doi.org/10.1016/j.biopha.2021.111596
References
R.E. Baker, A.S. Mahmud, I.F. Miller, M. Rajeev, F. Rasambainarivo, B.L. Rice, S. Takahashi, A.J. Tatem, C.E. Wagner, A. Wesolowski, L.-F. Wang and C.J.E. Metcalf, Nat. Rev. Microbiol., 20, 193 (2022); https://doi.org/10.1038/s41579-021-00639-z
M.C. Leoni, A. Ustianowski, H. Farooq and J.E. Arends, Infect. Dis. Ther., 7, 407 (2018); https://doi.org/10.1007/s40121-018-0210-5
J. Louten, Virus Transmission and Epidemiology. In: Essential Human Virology. Elsevier, pp. 71-92 (2016); https://doi.org/10.1016/B978-0-12-800947-5.00005-3
S.S. Gautam, C.S. Gautam, V.K. Garg and H. Singh, Expert Rev. Clin. Pharmacol., 13, 1183 (2020); https://doi.org/10.1080/17512433.2020.1832889
S. Kumar, C. Devi, S. Sarkar, V.K. Garg, P. Choudhary, M. Chopra, V. Sharma and R. Prakash, Convalescent Plasma: An Evidence-Based Old Therapy to Treat Novel Coronavirus Patients. In: Biotechnology to Combat COVID-19, IntechOpen, pp. 1-29 (2021).
P. Gisondi, S. PIaserico, C. Bordin, M. Alaibac, G. Girolomoni and L. Naldi, J. Eur. Acad. Dermatol. Venereol., 34, 2499 (2020); https://doi.org/10.1111/jdv.16774
L. Nováková, J. Pavlík, L. Chrenková, O. Martinec and L. Èervený, J. Pharm. Biomed. Anal., 147, 378 (2018); https://doi.org/10.1016/j.jpba.2017.07.003
F. Krammer, G.J.D. Smith, R.A.M. Fouchier, M. Peiris, K. Kedzierska, P.C. Doherty, P. Palese, M.L. Shaw, J. Treanor, R.G. Webster and A. García-Sastre, Nat. Rev. Dis. Primers, 4, 3 (2018); https://doi.org/10.1038/s41572-018-0002-y
Y.H. Kim, K.J. Hong, H. Kim and J.H. Nam, Rev. Med. Virol., 32, e2243 (2022); https://doi.org/10.1002/rmv.2243
Krisdiyanto, R.A.B.R. Ghazilla, M. Azuddin, M.K.F.B.A. Hairuddin, M.A. Muflikhun, N. Risdiana and E. Afifuddin, Medicine, 101, E31812 (2022); https://doi.org/10.1097/MD.0000000000031812
S.D. Seth, S. Singh and M. Maulik, Indian Regulatory Framework, In: Global Clinical Trials Effective Implementation and Management, Elsevier, Chap. 6, pp. 89–118 (2011); https://doi.org/10.1016/B978-0-12-381537-8.10006-8
D. Stan, A.M. Enciu, A.L. Mateescu, A.C. Ion, A.C. Brezeanu, D. Stan and C. Tanase, Front. Pharmacol., 12, 723233 (2021); https://doi.org/10.3389/fphar.2021.723233
J.S. Mani, J.B. Johnson, J.C. Steel, D.A. Broszczak, P.M. Neilsen, K.B. Walsh and M. Naiker, Virus Res., 284, 197989 (2020); https://doi.org/10.1016/j.virusres.2020.197989
N.R. Farnsworth, J. Pharm. Sci., 55, 225 (1966); https://doi.org/10.1002/jps.2600550302
Y.A. Attia, M.M. Alagawany, M.R. Farag, F.M. Alkhatib, A.F. Khafaga, A.M.E. Abdel-Moneim, K.A. Asiry, N.M. Mesalam, M.E. Shafi, M.A. Al-Harthi and M.E. Abd El-Hack, Front. Vet. Sci., 7, 573159 (2020); https://doi.org/10.3389/fvets.2020.573159
F.S. Li and J.K. Weng, Nat. Plants, 3, 17109 (2017); https://doi.org/10.1038/nplants.2017.109
Tannupriya and V.K. Garg, Urine, 5, 13 (2023); https://doi.org/10.1016/j.urine.2023.04.001
W. Hussain, K.S. Haleem, I. Khan, I. Tauseef, S. Qayyum, B. Ahmed and M.N. Riaz, Future Virol., 12, 299 (2017); https://doi.org/10.2217/fvl-2016-0110
R. Kaur, P. Sharma, G.K. Gupta, F. Ntie-Kang and D. Kumar, Molecules, 25, 2070 (2020); https://doi.org/10.3390/molecules25092070
S. Singh and A. Singh, Int. J. Pharm. Sci. Rev. Res., 48, 1 (2018).
K. Das, P. Das, M. Almuqbil, S.M.B. Asdaq, K. Nikhil, K. Preethi, N.F. Alomar, A. Angelinkiruba, R.M. Al harbi, W.A. Al Abdullah, S.M. Alshehri, Y.A. Laghabi, A.R. Alsaegh, Y. Mohzari, S. Alshehri, B.A. Mannasaheb and S.I. Rabbani, J. King Saud Univ. Sci., 35, 102534 (2023); https://doi.org/10.1016/j.jksus.2022.102534
D.S. Dimitrov, Nat. Rev. Microbiol., 2, 109 (2004); https://doi.org/10.1038/nrmicro817
J.M. Casasnovas, Subcell. Biochem., 68, 441 (2013); https://doi.org/10.1007/978-94-007-6552-8_15
D. Bhella, Philos. Trans. R. Soc. Lond. B Biol. Sci., 370, 20140035 (2015); https://doi.org/10.1098/rstb.2014.0035
M.S. Maginnis, J. Mol. Biol., 430, 2590 (2018); https://doi.org/10.1016/j.jmb.2018.06.024
J. Grove and M. Marsh, J. Cell Biol., 195, 1071 (2011); https://doi.org/10.1083/jcb.201108131
D. Chattopadhyay, M.C. Sarkar, T. Chatterjee, R.S. Dey, S. Chakraborti, P. Bag and M.T.H. Khan, N. Biotechnol., 25, 347 (2009); https://doi.org/10.1016/j.nbt.2009.03.007
T. Ghosh, K. Chattopadhyay, M. Marschall, P. Karmakar, P. Mandal and B. Ray, Glycobiology, 19, 2 (2009); https://doi.org/10.1093/glycob/cwn092
M.T.H. Khan, A. Ather, K.D. Thompson and R. Gambari, Antiviral Res., 67, 107 (2005); https://doi.org/10.1016/j.antiviral.2005.05.002
J. Balzarini, Nat. Rev. Microbiol., 5, 583 (2007); https://doi.org/10.1038/nrmicro1707
S. Pilotto, T. Fouqueau, N. Lukoyanova, C. Sheppard, S. Lucas-Staat, L.M. Díaz-Santín, D. Matelska, D. Prangishvili, A.C.M. Cheung and F. Werner, Nat. Commun., 12, 5523 (2021); https://doi.org/10.1038/s41467-021-25666-5
M. Koehler, M. Delguste, C. Sieben, L. Gillet and D. Alsteens, Annu. Rev. Virol., 7, 143 (2020); https://doi.org/10.1146/annurev-virology-122019-070025
T.J. Huang, Y.C. Tsai, S.Y. Chiang, G.J. Wang, Y.C. Kuo, Y.C. Chang, Y.-Y. Wu and Y.-C. Wu, Virus Res., 192, 16 (2014); https://doi.org/10.1016/j.virusres.2014.07.015
Y.C. Kuo, L.C. Lin, W.J. Tsai, C.J. Chou, S.H. Kung and Y.H. Ho, Antimicrob. Agents Chemother., 46, 2854 (2002); https://doi.org/10.1128/AAC.46.9.2854-2864.2002
J. Liu, L. Shao, P. Trang, Z. Yang, M. Reeves, X. Sun, G.-P. Vu, Y. Wang, H. Li, C. Zheng, S. Lu and F. Liu, Sci. Rep., 6, 27068 (2016); https://doi.org/10.1038/srep27068
H.J. Choi, J.H. Song, K.S. Park and D.H. Kwon, Eur. J. Pharm. Sci., 37, 329 (2009); https://doi.org/10.1016/j.ejps.2009.03.002
T.S. Wahyuni, A. Widyawaruyanti, M.I. Lusida, A. Fuad, Soetjipto, H. Fuchino, N. Kawahara, Y. Hayashi, C. Aoki and H. Hotta, Fitoterapia, 99, 276 (2014); https://doi.org/10.1016/j.fitote.2014.10.011
A. Bauer and M. Brönstrup, Nat. Prod. Rep., 31, 35 (2014); https://doi.org/10.1039/C3NP70058E
J.J. Xu, X. Wu, M.M. Li, G.Q. Li, Y.T. Yang, H.J. Luo, W.-H. Huang, H.Y. Chung, W.-C. Ye, G.-C. Wang and Y.-L. Li, J. Agric. Food Chem., 62, 2182 (2014); https://doi.org/10.1021/jf404310y
S.C. Bachar, K. Mazumder, R. Bachar, A. Aktar and M. Al Mahtab, Front. Pharmacol., 12, 732891 (2021); https://doi.org/10.3389/fphar.2021.732891
S. Kumar, R. Saini, P. Suthar, V. Kumar and R. Sharma, Plant Secondary Metabolites: Their Food and Therapeutic Importance. In: Plant Secondary Metabolites. Springer, Singapore, pp. 371-413 (2022); https://doi.org/10.1007/978-981-16-4779-6_12
G. Guerriero, R. Berni, J.A. Muñoz-Sanchez, F. Apone, E.M. Abdel-Salam, A.A. Qahtan, A. Alatar, C. Cantini, G. Cai, J.-F. Hausman, K. Siddiqui, S. Hernández-Sotomayor and M. Faisal, Genes, 9, 309 (2018); https://doi.org/10.3390/genes9060309
F. Bourgaud, A. Gravot, S. Milesi and E. Gontier, Plant Sci., 161, 839 (2001); https://doi.org/10.1016/S0168-9452(01)00490-3
Z.Z. Zhang, X.X. Li, Y.N. Chu, M.X. Zhang, Y.Q. Wen, C.Q. Duan and Q.-H. Pan, Plant Physiol. Biochem., 57, 74 (2012); https://doi.org/10.1016/j.plaphy.2012.05.005
A.O. Chatzivasileiou, V. Ward, S.M.B. Edgar and G. Stephanopoulos, Proc. Natl. Acad. Sci. USA, 116, 506 (2019); https://doi.org/10.1073/pnas.1812935116
H. Karlic and F. Varga, Mevalonate pathway. In: Encyclopedia of Cancer. Academic Press, pp. 445-457 (2017); https://doi.org/10.1016/B978-0-12-801238-3.65000-6
M. Ishida, M. Nagata, T. Ohara, T. Kakizaki, K. Hatakeyama and T. Nishio, Breed. Sci., 62, 63 (2012); https://doi.org/10.1270/jsbbs.62.63
M.K. Lee, J.H. Chun, D.H. Byeon, S.O. Chung, S.U. Park, S. Park, M.V. Arasu, N.A. Al-Dhabi, Y.-P. Lim and S.-J. Kim, Lebensm. Wiss. Technol., 58, 93 (2014); https://doi.org/10.1016/j.lwt.2014.03.001
J. Clayden, N. Greeves and S. Warren, Organic Chemistry, Oxford University Press (2012).
M. Chen, C. Yao, Y. Qin, X. Cui, P. Li, Z. Ji, L. Lin, H. Wu, Z. Zhou, Y. Gui, Z. Li and F. Gao, Signal Transduct. Target. Ther., 7, 1 (2022); https://doi.org/10.1038/s41392-021-00710-4
S. Pandey, G. Malviya and M. Chottova Dvorakova, Int. J. Mol. Sci., 22, 8828 (2021); https://doi.org/10.3390/ijms22168828
T.H. Rider, C.E. Zook, T.L. Boettcher, S.T. Wick, J.S. Pancoast and B.D. Zusman, PLoS One, 6, e22572 (2011); https://doi.org/10.1371/journal.pone.0022572
Y.C.J. Lee, J.D. Shirkey, J. Park, K. Bisht and A.J. Cowan, BioDesign Res., 2022, 2022/9898241 (2022); https://doi.org/10.34133/2022/9898241
G. Agarwal and R. Gabrani, Int. J. Pept. Res. Ther., 27, 149 (2021); https://doi.org/10.1007/s10989-020-10072-0
L.Y. Chia, P.V. Kumar, M.A.A. Maki, G. Ravichandran and S. Thilagar, Int. J. Pept. Res. Ther., 29, 7 (2023); https://doi.org/10.1007/s10989-022-10478-y
E. Teissier, F. Penin and E.I. Pécheur, Molecules, 16, 221 (2010); https://doi.org/10.3390/molecules16010221
M. Divyashree, M.K. Mani, D. Reddy, R. Kumavath, P. Ghosh, V. Azevedo and D. Barh, Protein Pept. Lett., 27, 120 (2020); https://doi.org/10.2174/0929866526666190925152957
S. Skalickova, Z. Heger, L. Krejcova, V. Pekarik, K. Bastl, F. Kostolansky, J. Janda, E. Vareckova, O. Zitka, V. Adam and R. Kizek, Viruses, 7, 5428 (2015); https://doi.org/10.3390/v7102883
P. Bogomolov, A. Alexandrov, N. Voronkova, M. Macievich, K. Kokina, M. Petrachenkova, T. Lehr, F.A. Lempp, H. Wedemeyer, M. Haag, M. Schwab, W.E. Haefeli, A. Blank and S. Urban, J. Hepatol., 65, 490 (2016); https://doi.org/10.1016/j.jhep.2016.04.016
D. Yu, X. Ding, Z. Liu, X. Wu, Y. Zhu, H. Wei, H. Chong, S. Cui and Y. He, J. Biol. Chem., 293, 12703 (2018); https://doi.org/10.1074/jbc.RA118.003538
H. Jenssen, Viruses, 1, 939 (2009); https://doi.org/10.3390/v1030939
F. Abedinifar, E. Babazadeh Rezaei, M. Biglar, B. Larijani, H. Hamedifar, S. Ansari and M. Mahdavi, Mol. Divers., 25, 2571 (2021); https://doi.org/10.1007/s11030-020-10128-9
R. Shah and P.K. Verma, Chem. Cent. J., 12, 137 (2018); https://doi.org/10.1186/s13065-018-0511-5
D. Gramec, L. Peterlin Mašiè and M. Sollner Dolenc, Chem. Res. Toxicol., 27, 1344 (2014); https://doi.org/10.1021/tx500134g
D. Gramec, L. Peterlin-Mašic and M. Sollner-Dolenc, Chem. Res. Toxicol., 27, 1344 (2014); https://doi.org/10.1021/tx500134g
S. Tewtrakul, S. Subhadhirasakul, S. Cheenpracha and C. Karalai, Phytother. Res., 21, 1092 (2007); https://doi.org/10.1002/ptr.2252
J.B. Hudson, L. Harris, A. Teeple and G.H.N. Towers, Antiviral Res., 20, 33 (1993); https://doi.org/10.1016/0166-3542(93)90057-P
D. Kang, X. Ding, G. Wu, Z. Huo, Z. Zhou, T. Zhao, D. Feng, Z. Wang, Y. Tian, D. Daelemans, E. De Clercq, C. Pannecouque, P. Zhan and X. Liu, ACS Med. Chem. Lett., 8, 1188 (2017); https://doi.org/10.1021/acsmedchemlett.7b00361
Z. Wang, D. Kang, M. Chen, G. Wu, D. Feng, T. Zhao, Z. Zhou, Z. Huo, L. Jing, X. Zuo, D. Daelemans, E. De Clercq, C. Pannecouque, P. Zhan and X. Liu, Chem. Biol. Drug Des., 92, 2009 (2018); https://doi.org/10.1111/cbdd.13373
R. Amorim, M.D.F. de Meneses, J.C. Borges, L.C. da Silva Pinheiro, L.A. Caldas, C.C. Cirne-Santos, M.V.P. de Mello, A.M.T. de Souza, H.C. Castro, I.C.N. de Palmer Paixão, R.M. Campos, I.E. Bergmann, V. Malirat, A.M.R. Bernardino, M.A. Rebello and D.F. Ferreira, Arch. Virol., 162, 1577 (2017); https://doi.org/10.1007/s00705-017-3261-0
P. Caffrey, S. Lynch, E. Flood, S. Finnan and M. Oliynyk, Chem. Biol., 8, 713 (2001); https://doi.org/10.1016/S1074-5521(01)00046-1
M. Baginski and J. Czub, Curr. Drug Metab., 10, 459 (2009); https://doi.org/10.2174/138920009788898019
R. Laniado-Laborín and M.N. Cabrales-Vargas, Rev. Iberoam. Micol., 26, 223 (2009); https://doi.org/10.1016/j.riam.2009.06.003
B. Malewicz, M. Momsen and H.M. Jenkin, Antimicrob. Agents Chemother., 23, 119 (1983); https://doi.org/10.1128/AAC.23.1.119
B. Malewicz, M. Momsen, H.M. Jenkin and E. Borowski, Antimicrob. Agents Chemother., 25, 772 (1984); https://doi.org/10.1128/AAC.25.6.772
N.Z. Abd Wahab, A. Azizul and N. Ibrahim, Iran. J. Microbiol., 12, 460 (2020); https://doi.org/10.18502/ijm.v12i5.4608
L. Almagro, F. Fernández-Pérez and M.A. Pedreño, Molecules, 20, 2973 (2015); https://doi.org/10.3390/molecules20022973
N.R. Farnsworth, G.H. Svoboda and R.N. Blomster, J. Pharm. Sci., 57, 2174 (1968); https://doi.org/10.1002/jps.2600571235
S. Faisal, S.L. Badshah, B. Kubra, A.H. Emwas and M. Jaremko, Nat. Prod. Bioprospect., 13, 4 (2023); https://doi.org/10.1007/s13659-022-00366-9
T. Behl, G. Rocchetti, S. Chadha, G. Zengin, S. Bungau, A. Kumar, V. Mehta, M.S. Uddin, G. Khullar, D. Setia, S. Arora, K.I. Sinan, G. Ak, P. Putnik, M. Gallo and D. Montesano, Pharmaceuticals, 14, 381 (2021); https://doi.org/10.3390/ph14040381
P.J. Houghton, T.Z. Woldemariam, A.I. Khan, A. Burke and N. Mahmood, Antiviral Res., 25, 235 (1994); https://doi.org/10.1016/0166-3542(94)90006-X
C.E. Cecil, J.M. Davis, N.B. Cech and S.M. Laster, Int. Immunopharmacol., 11, 1706 (2011); https://doi.org/10.1016/j.intimp.2011.06.002
G.B. Zhang, B. Zhang, X.X. Zhang and F.H. Bing, Acta Virol., 57, 85 (2013); https://doi.org/10.4149/av_2013_01_85
B. Özçelik, M. Kartal and I. Orhan, Pharm. Biol., 49, 396 (2011); https://doi.org/10.3109/13880209.2010.519390
Ö. Guclu-Ustundag and G. Mazza, Crit. Rev. Food Sci. Nutr., 47, 231 (2007); https://doi.org/10.1080/10408390600698197
C.M.O. Simões, M. Amoros and L. Girre, Phytother. Res., 13, 323 (1999); https://doi.org/10.1002/(SICI)1099-1573(199906)13:4<323::AID-PTR448>3.0.CO;2-C
S.D. Desai, D.G. Desai and H. Kaur, Pharm. Times, 41, 13 (2009).
A. Estévez-Braun and A.G. González, Nat. Prod. Rep., 14, 465 (1997); https://doi.org/10.1039/np9971400465
I. Kostova, S. Bhatia, P. Grigorov, S. Balkansky, V. S. Parmar, A. K. Prasad and L. Saso, Curr. Med. Chem., 18, 3929 (2012); https://doi.org/10.2174/092986711803414395
M.Z. Hassan, H. Osman, M.A. Ali and M.J. Ahsan, Eur. J. Med. Chem., 123, 236 (2016); https://doi.org/10.1016/j.ejmech.2016.07.056
I. Kostova, Curr. HIV Res., 4, 347 (2006); https://doi.org/10.2174/157016206777709393
H.S. Tuli, H. Mistry, G. Kaur, D. Aggarwal, V.K. Garg, S. Mittal, M.B. Yerer, K. Sak and M.A. Khan, Anticancer. Agents Med. Chem., 22, 499 (2022); https://doi.org/10.2174/1871520621666211119085834
H.S. Tuli, V.K. Garg, J.K. Mehta, G. Kaur, R.K. Mohapatra, K. Dhama, K. Sak, A. Kumar, M. Varol, D. Aggarwal, U. Anand, J. Kaur, R. Gillan, G. Sethi and A. Bishayee, OncoTargets Ther., 15, 1419 (2022); https://doi.org/10.2147/OTT.S366630
I. Ignat, I. Volf and V.I. Popa, Food Chem., 126, 1821 (2011); https://doi.org/10.1016/j.foodchem.2010.12.026
D.E. Stevenson and R.D. Hurst, Cell. Mol. Life Sci., 64, 2900 (2007); https://doi.org/10.1007/s00018-007-7237-1
J.G. Handique and J.B. Baruah, React. Funct. Polym., 52, 163 (2002); https://doi.org/10.1016/S1381-5148(02)00091-3
A. Kamboj and A. Saluja, Pharmacogn. Rev., 3, 364 (2009).
A. Kamboj, A.K. Saluja, M. Kumar and P. Atri, J. Pharm. Res., 5, 2402 (2012).
S.C. Sahu, J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 20, 61 (2002); https://doi.org/10.1081/GNC-120005388
M.A. Vazquez-Prieto and R.M. Miatello, Mol. Aspects Med., 31, 540 (2010); https://doi.org/10.1016/j.mam.2010.09.009
R. Rouf, S.J. Uddin, D.K. Sarker, M.T. Islam, E.S. Ali, J.A. Shilpi, L. Nahar, E. Tiralongo and S.D. Sarker, Trends Food Sci. Technol., 104, 219 (2020); https://doi.org/10.1016/j.tifs.2020.08.006
W.D. MacRae and G.H.N. Towers, Phytochemistry, 23, 1207 (1984); https://doi.org/10.1016/S0031-9422(00)80428-8
H. Adlercreutz, Crit. Rev. Clin. Lab. Sci., 44, 483 (2007); https://doi.org/10.1080/10408360701612942
Y. Liu, Y. Yang, S. Tasneem, N. Hussain, M. Daniyal, H. Yuan, Q. Xie, B. Liu, J. Sun, Y. Jian, B. Li, S. Chen and W. Wang, Molecules, 23, 2147 (2018); https://doi.org/10.3390/molecules23092147
D. Barker, Molecules, 24, 1424 (2019); https://doi.org/10.3390/molecules24071424
Q. Cui, R. Du, M. Liu and L. Rong, Molecules, 25, 183 (2020); https://doi.org/10.3390/molecules25010183
E. Pichersky and R.A. Raguso, New Phytol., 220, 692 (2018); https://doi.org/10.1111/nph.14178
W. Yang, X. Chen, Y. Li, S. Guo, Z. Wang and X. Yu, Nat. Prod. Commun., 15, 1 (2020); https://doi.org/10.1177/1934578X20903
J. Matejic, Z. Šarac and V. Randelovic, Biotechnol. Biotechnol. Equip., 24(sup1), 95 (2010); https://doi.org/10.1080/13102818.2010.10817819
A. Hazafa, K.U. Rehman, N. Jahan and Z. Jabeen, Nutr. Cancer, 72, 386 (2020); https://doi.org/10.1080/01635581.2019.1637006
A.A. Al-Karmalawy, M.M. Farid, A. Mostafa, A.Y. Ragheb, M. Shehata, S.H. Mahmoud, N.M.A. Shama, M. GabAllah, G. Mostafa-Hedeab and M.M. Marzouk, Molecules, 26, (2021); https://doi.org/10.3390/molecules26216559
S.L. Badshah, S. Faisal, A. Muhammad, B.G. Poulson, A.H. Emwas and M. Jaremko, Biomed. Pharmacother., 140, 111596 (2021); https://doi.org/10.1016/j.biopha.2021.111596