Copyright (c) 2017 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Production of Bioethanol from Cogon Grass (Imperata cylindrical)
Asian Journal of Chemistry,
Vol. 29 No. 1 (2017): Vol 29 Issue 1
Abstract
Imperata cylindrical or cogon grass is one of the abundant low-value by-products of agriculture waste in the world. The research had provided a discussion of how this non-valuable agriculture waste can be managed to become an alternative bioresource for bioethanol production. For effective bioethanol production, a pretreatment process is prerequisite to reduce the hemicellulose and lignin content in this recalcitrant lignocellulosic biomass. In this study, optimization of the temperature and concentration of acid and alkali were the major factor to ensure the effectiveness of the chemical pretreatment process. The pretreated conditions were optimized by pretreated Imperata cylindrical with H2SO4 and NaOH with 1.5, 2.0 and 2.5 % (w/v) at 90, 120 and 150 °C for 2 h. Among the test conditions, the optimal conditions of pretreatment were obtained in both 2 % (w/v) of sulphuric acid and sodium hydroxide at 90 and 150 °C respectively. The efficiency of both acid and alkaline pretreatment was evaluated through simultaneous saccharification and fermentation process. The highest ethanol yield was obtained with the Imperata cylindrical pretreated with sulphuric acid was 45.42 %.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Ariyajaroenwong, P. Laopaiboon, P. Jaisil and L. Laopaiboon, Energies, 5, 1215 (2012).
- E.C. Bensah and M. Mensah, Int. J. Chem. Eng., 2013, 1 (2013).
- P. Binod, K.U. Janu, R. Sindhu and A. Pandey, Hydrolysis of Lignocellulosic Biomass for Bioethanol Production, In: Biofuels, Academic Press, Burlingtons: edn 1, pp. 229-250 (2011).
- G. Brodeur, Ph.D. Thesis. Developing a Novel Two-Stage Pretreatment of Lignocellulosic Biomass for Enhanced Bioprocessing, The Florida State University, U.S.A., pp. 1-33 (2013).
- A.K. Chandel, F.A.F. Antunes, P.V. De Arruda, T.S.S. Milessi, S.S. Silva and M.G. De, Dilute Acid Hydrolysis of Agro-Residues for the Depolymerisation of Hemicellulose: State-of-the-Art, Springer, vol. XVI, pp. 348-352 (2012).
- Y. Chen, M.A. Stevens, Y. Zhu, J. Holmes and H. Xu, Biotechnol. Biofuels, 6, 8 (2013).
- S. Deejing and W. Ketkorn, Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 36, 384 (2009).
- J.J.R. Fojas and E.J. Del Rosario, Int. Scholarly Scientific Res. Innovation, 7, 550 (2013).
- E.J. Holzmueller and S. Jose, Forests, 3, 853 (2012).
- L.J. Jönsson, B. Alriksson and N.-O. Nilvebrant, Biotechnol. Biofuels, 6, 16 (2013).
- A. López, G. Ortegón and F. Robles, Adv. Invetigación En Ingenieria, 13, 98 (2010).
- A. Manzoor, Z. Khokhar, A. Hussain, Q. Syed, S. Baig and F.R. Lahore, Sci. Int. (Lahore), 24, 41 (2012).
- K. Miazek, Release of Reducing Sugars from High Yield Energy Crops During Termochemical Pretreatment, Conference Proceeding of Procesní technika, PRAGUE, pp. 116-124 (2010).
- G.L. Miller, Anal. Chem., 31, 426 (1959).
- S. Premjet, B. Pumira and D. Premjet, BioResources, 8, 701 (2013).
- D.P. Singh and R.K. Trivedi, Int. J. ChemTech. Res., 5, 727 (2013).
- C.E.S. Alvarez, J.L. Miranda, M.R. Castro, G.P. Verdín, M.A. Rodríguez-Pérez and I.C. Hernández, Afr. J. Biotechnol., 12, 4956 (2013).
- Q. Sun, M. Foston, X. Meng, D. Sawada, S.V. Pingali, H.M. O’Neill, H. Li, C.E. Wyman, P. Langan, A.J. Ragauskas and R. Kumar, Biotechnol. Biofuels, 7, 150 (2014).
- R.S.S. Teixeira, A.S.A. da Silva, V.S. Ferreira-Leitão and E.P.S. Bon, Carbohydr. Res., 363, 33 (2012).
- Y. Zha, J.A. Westerhuis, B. Muilwijk, K.M. Overkamp, B.M. Nijmeijer, L. Coulier, A.K. Smilde and P.J. Punt, BMC Biotechnol., 14, 22 (2014).
References
P. Ariyajaroenwong, P. Laopaiboon, P. Jaisil and L. Laopaiboon, Energies, 5, 1215 (2012).
E.C. Bensah and M. Mensah, Int. J. Chem. Eng., 2013, 1 (2013).
P. Binod, K.U. Janu, R. Sindhu and A. Pandey, Hydrolysis of Lignocellulosic Biomass for Bioethanol Production, In: Biofuels, Academic Press, Burlingtons: edn 1, pp. 229-250 (2011).
G. Brodeur, Ph.D. Thesis. Developing a Novel Two-Stage Pretreatment of Lignocellulosic Biomass for Enhanced Bioprocessing, The Florida State University, U.S.A., pp. 1-33 (2013).
A.K. Chandel, F.A.F. Antunes, P.V. De Arruda, T.S.S. Milessi, S.S. Silva and M.G. De, Dilute Acid Hydrolysis of Agro-Residues for the Depolymerisation of Hemicellulose: State-of-the-Art, Springer, vol. XVI, pp. 348-352 (2012).
Y. Chen, M.A. Stevens, Y. Zhu, J. Holmes and H. Xu, Biotechnol. Biofuels, 6, 8 (2013).
S. Deejing and W. Ketkorn, Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 36, 384 (2009).
J.J.R. Fojas and E.J. Del Rosario, Int. Scholarly Scientific Res. Innovation, 7, 550 (2013).
E.J. Holzmueller and S. Jose, Forests, 3, 853 (2012).
L.J. Jönsson, B. Alriksson and N.-O. Nilvebrant, Biotechnol. Biofuels, 6, 16 (2013).
A. López, G. Ortegón and F. Robles, Adv. Invetigación En Ingenieria, 13, 98 (2010).
A. Manzoor, Z. Khokhar, A. Hussain, Q. Syed, S. Baig and F.R. Lahore, Sci. Int. (Lahore), 24, 41 (2012).
K. Miazek, Release of Reducing Sugars from High Yield Energy Crops During Termochemical Pretreatment, Conference Proceeding of Procesní technika, PRAGUE, pp. 116-124 (2010).
G.L. Miller, Anal. Chem., 31, 426 (1959).
S. Premjet, B. Pumira and D. Premjet, BioResources, 8, 701 (2013).
D.P. Singh and R.K. Trivedi, Int. J. ChemTech. Res., 5, 727 (2013).
C.E.S. Alvarez, J.L. Miranda, M.R. Castro, G.P. Verdín, M.A. Rodríguez-Pérez and I.C. Hernández, Afr. J. Biotechnol., 12, 4956 (2013).
Q. Sun, M. Foston, X. Meng, D. Sawada, S.V. Pingali, H.M. O’Neill, H. Li, C.E. Wyman, P. Langan, A.J. Ragauskas and R. Kumar, Biotechnol. Biofuels, 7, 150 (2014).
R.S.S. Teixeira, A.S.A. da Silva, V.S. Ferreira-Leitão and E.P.S. Bon, Carbohydr. Res., 363, 33 (2012).
Y. Zha, J.A. Westerhuis, B. Muilwijk, K.M. Overkamp, B.M. Nijmeijer, L. Coulier, A.K. Smilde and P.J. Punt, BMC Biotechnol., 14, 22 (2014).