Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
DFT Studies on Ethane Activation by Gas-Phase PtX+ (X = F, Cl and Br)
Corresponding Author(s) : Zhi-Yuan Geng
Asian Journal of Chemistry,
Vol. 27 No. 9 (2015): Vol 27 Issue 9
Abstract
The mechanism of C-H bond activation of C2H6 catalyzed by platinum halide cations [PtX+ (X = F, Cl and Br)] has been carried out at the DFT (B3LYP) level based on the RECP + 6-311+G(d,p). Both high-spin and low-spin potential energy surfaces are characterized. For PtCl+/C2H6 and PtBr+/C2H6 system, the crossing point between the different potential-energy surfaces is required. For PtF+/C2H6 couple, the whole reaction proceeds on the ground-states potential energy surfaces with a spin-allowed manner. Our calculations indicate that the reactions take place more easily along the low-spin potential energy surface. For PtF+ and PtCl+ with ethane, the main product is HF + HPt(C2H4)+ and HCl + HPt(C2H4)+, respectively. While for the PtBr+/C2H6 system, the final product is a mixture of HBr + HPt(C2H4)+ and H2+BrPt(C2H4)+.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Othmer, Encyclopedia of Chemical Technology, Wiley, New York (1991).
- M. Pecul and T. Helgaker, Int. J. Mol. Sci., 4, 143 (2003); doi:10.3390/i4030143.
- P. Ye, Q. Ye, G.B. Zhang and Z. Cao, Chem. Phys. Lett., 501, 554 (2011); doi:10.1016/j.cplett.2010.11.015.
- Y. Joshi and K.T. Thomson, J. Catal., 246, 249 (2007); doi:10.1016/j.jcat.2006.11.032.
- D.K. Bohme and H. Schwarz, Angew. Chem. Int. Ed., 44, 2336 (2005); doi:10.1002/anie.200461698.
- D. Schroder and H. Schwarz, Topics in Organometallic Chemistry, Springer-Verlag: Berlin, Heidelberg (2007).
- K. Eller and H. Schwarz, Chem. Rev., 91, 1121 (1991); doi:10.1021/cr00006a002.
- J. Roithová and D. Schröder, Chem. Rev., 110, 1170 (2010); doi:10.1021/cr900183p.
- S.H. Zhang, S. Li and Y. Jiang, Organometallics, 22, 3820 (2003); doi:10.1021/om030291v.
- M.C. Holthausen and W. Koch, J. Am. Chem. Soc., 118, 9932 (1996); doi:10.1021/ja954090x.
- G.T. De Jong, D.P. Geerke, A. Diefenbach, M. Solà and F.M. Bickelhaupt, J. Comput. Chem., 26, 1006 (2005); doi:10.1002/jcc.20233.
- D. Schroder and H. Schwarz, Angew. Chem. Int. Ed., 34, 1973 (1995); doi:10.1002/anie.199519731.
- A. Yakovlev, A. Shubin, G. Zhidomirov and R.A. Van Santen, Catal. Lett., 70, 175 (2000); doi:10.1023/A:1018849720636.
- Á. Révész, P. Milko, J. Zabka, D. Schröder and J. Roithová, J. Mass Spectrom., 45, 1246 (2010); doi:10.1002/jms.1793.
- D. Schroder and H. Schwarz, Proc. Natl. Acad. Sci. USA, 105, 18114 (2008); doi:10.1073/pnas.0801849105.
- M. Schlangen, D. Schröder and H. Schwarz, Chem. Eur. J., 13, 6810 (2007); doi:10.1002/chem.200700506.
- L.F. Halle, P.B. Armentrout and J.L. Beauchamp, Organometallics, 1, 963 (1982); doi:10.1021/om00067a012.
- M.L. Mandich, M.L. Steigerwald and W.D. Reents, J. Am. Chem. Soc., 108, 6197 (1986); doi:10.1021/ja00280a015.
- P.B. Armentrout and B.L. Tjelta, Organometallics, 16, 5372 (1997); doi:10.1021/om970718w.
- M. Schlangen and H. Schwarz, J. Catal., 284, 126 (2011); doi:10.1016/j.jcat.2011.03.020.
- M. Schlangen, Dissertation D83, Nickel-Mediated Bond Activation of Small Alkanes and of Molecular Oxygen-Ligand Effects and The Role of the Metal's Formal Oxidation State, Technische Universität Berlin, (2008).
- R.M. Watwe, B.E. Spiewak and R.D. Cortright, J. Catal., 180, 184 (1998); doi:10.1006/jcat.1998.2288.
- T. Hanmura, M. Ichihashi and T. Kondow, J. Phys. Chem. A, 106, 11465 (2002); doi:10.1021/jp021275z.
- C. Adlhart and E. Uggerud, Chem. Eur. J., 13, 6883 (2007); doi:10.1002/chem.200700501.
- A.D. Becke, Phys. Rev., 38, 3098 (1988); doi:10.1103/PhysRevA.38.3098.
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); doi:10.1063/1.464913.
- C. Lee, W. Yang and R.G. Parr, Phys. Rev., 37, 785 (1988); doi:10.1103/PhysRevB.37.785.
- M.J. Frisch, J.A. Pople and J.S. Binkley, J. Chem. Phys., 80, 3265 (1984); doi:10.1063/1.447079.
- W. Lewis-Bevan, R.D. Gaston, J. Tyrrell, W.D. Stork and G.L. Salmon, J. Am. Chem. Soc., 114, 1933 (1992); doi:10.1021/ja00032a001.
- A.E. Reed, R.B. Weinstock and F. Weinhold, J. Chem. Phys., 83, 735 (1985); doi:10.1063/1.449486.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian 03, revision c. 02; Gaussian, Inc., Wallingford, CT (2004).
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT (2009).
- G. Zhang, S. Li and Y. Jiang, Organometallics, 22, 3820 (2003); doi:10.1021/om030291v.
- K. Yoshizawa, Y. Shiota and T. Yamabe, J. Chem. Phys., 111, 538 (1999); doi:10.1063/1.479333.
- S.L. Liu, Z.Y. Geng, Y. Wang and Y. Yan, J. Phys. Chem. A, 116, 4560 (2012); doi:10.1021/jp210924a.
- G.D. Purvis III and R.J. Bartlett, J. Chem. Phys., 76, 1910 (1982); doi:10.1063/1.443164.
- H.G. Cho and L. Andrews, Organometallics, 28, 1358 (2009); doi:10.1021/om801077x.
- J. Zhou, Z.Y. Geng, J. Liu, Y. Wang, X. Wang, J. Wu and H. Liu, Comput. Theoret. Chem., 965, 221 (2011); doi:10.1016/j.comptc.2011.02.001.
References
K. Othmer, Encyclopedia of Chemical Technology, Wiley, New York (1991).
M. Pecul and T. Helgaker, Int. J. Mol. Sci., 4, 143 (2003); doi:10.3390/i4030143.
P. Ye, Q. Ye, G.B. Zhang and Z. Cao, Chem. Phys. Lett., 501, 554 (2011); doi:10.1016/j.cplett.2010.11.015.
Y. Joshi and K.T. Thomson, J. Catal., 246, 249 (2007); doi:10.1016/j.jcat.2006.11.032.
D.K. Bohme and H. Schwarz, Angew. Chem. Int. Ed., 44, 2336 (2005); doi:10.1002/anie.200461698.
D. Schroder and H. Schwarz, Topics in Organometallic Chemistry, Springer-Verlag: Berlin, Heidelberg (2007).
K. Eller and H. Schwarz, Chem. Rev., 91, 1121 (1991); doi:10.1021/cr00006a002.
J. Roithová and D. Schröder, Chem. Rev., 110, 1170 (2010); doi:10.1021/cr900183p.
S.H. Zhang, S. Li and Y. Jiang, Organometallics, 22, 3820 (2003); doi:10.1021/om030291v.
M.C. Holthausen and W. Koch, J. Am. Chem. Soc., 118, 9932 (1996); doi:10.1021/ja954090x.
G.T. De Jong, D.P. Geerke, A. Diefenbach, M. Solà and F.M. Bickelhaupt, J. Comput. Chem., 26, 1006 (2005); doi:10.1002/jcc.20233.
D. Schroder and H. Schwarz, Angew. Chem. Int. Ed., 34, 1973 (1995); doi:10.1002/anie.199519731.
A. Yakovlev, A. Shubin, G. Zhidomirov and R.A. Van Santen, Catal. Lett., 70, 175 (2000); doi:10.1023/A:1018849720636.
Á. Révész, P. Milko, J. Zabka, D. Schröder and J. Roithová, J. Mass Spectrom., 45, 1246 (2010); doi:10.1002/jms.1793.
D. Schroder and H. Schwarz, Proc. Natl. Acad. Sci. USA, 105, 18114 (2008); doi:10.1073/pnas.0801849105.
M. Schlangen, D. Schröder and H. Schwarz, Chem. Eur. J., 13, 6810 (2007); doi:10.1002/chem.200700506.
L.F. Halle, P.B. Armentrout and J.L. Beauchamp, Organometallics, 1, 963 (1982); doi:10.1021/om00067a012.
M.L. Mandich, M.L. Steigerwald and W.D. Reents, J. Am. Chem. Soc., 108, 6197 (1986); doi:10.1021/ja00280a015.
P.B. Armentrout and B.L. Tjelta, Organometallics, 16, 5372 (1997); doi:10.1021/om970718w.
M. Schlangen and H. Schwarz, J. Catal., 284, 126 (2011); doi:10.1016/j.jcat.2011.03.020.
M. Schlangen, Dissertation D83, Nickel-Mediated Bond Activation of Small Alkanes and of Molecular Oxygen-Ligand Effects and The Role of the Metal's Formal Oxidation State, Technische Universität Berlin, (2008).
R.M. Watwe, B.E. Spiewak and R.D. Cortright, J. Catal., 180, 184 (1998); doi:10.1006/jcat.1998.2288.
T. Hanmura, M. Ichihashi and T. Kondow, J. Phys. Chem. A, 106, 11465 (2002); doi:10.1021/jp021275z.
C. Adlhart and E. Uggerud, Chem. Eur. J., 13, 6883 (2007); doi:10.1002/chem.200700501.
A.D. Becke, Phys. Rev., 38, 3098 (1988); doi:10.1103/PhysRevA.38.3098.
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); doi:10.1063/1.464913.
C. Lee, W. Yang and R.G. Parr, Phys. Rev., 37, 785 (1988); doi:10.1103/PhysRevB.37.785.
M.J. Frisch, J.A. Pople and J.S. Binkley, J. Chem. Phys., 80, 3265 (1984); doi:10.1063/1.447079.
W. Lewis-Bevan, R.D. Gaston, J. Tyrrell, W.D. Stork and G.L. Salmon, J. Am. Chem. Soc., 114, 1933 (1992); doi:10.1021/ja00032a001.
A.E. Reed, R.B. Weinstock and F. Weinhold, J. Chem. Phys., 83, 735 (1985); doi:10.1063/1.449486.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian 03, revision c. 02; Gaussian, Inc., Wallingford, CT (2004).
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT (2009).
G. Zhang, S. Li and Y. Jiang, Organometallics, 22, 3820 (2003); doi:10.1021/om030291v.
K. Yoshizawa, Y. Shiota and T. Yamabe, J. Chem. Phys., 111, 538 (1999); doi:10.1063/1.479333.
S.L. Liu, Z.Y. Geng, Y. Wang and Y. Yan, J. Phys. Chem. A, 116, 4560 (2012); doi:10.1021/jp210924a.
G.D. Purvis III and R.J. Bartlett, J. Chem. Phys., 76, 1910 (1982); doi:10.1063/1.443164.
H.G. Cho and L. Andrews, Organometallics, 28, 1358 (2009); doi:10.1021/om801077x.
J. Zhou, Z.Y. Geng, J. Liu, Y. Wang, X. Wang, J. Wu and H. Liu, Comput. Theoret. Chem., 965, 221 (2011); doi:10.1016/j.comptc.2011.02.001.