Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Cobalt Nanoparticles Using Poly(vinyl pyrrolidone) and Sodium Dodecyl Sulphate
Corresponding Author(s) : Md. Al-Amin
Asian Journal of Chemistry,
Vol. 27 No. 9 (2015): Vol 27 Issue 9
Abstract
In this paper, cobalt nanoparticles were synthesized via wet chemical reduction method using hydrazine as reducing agent. The morphology of synthesized cobalt nanoparticles were studied with or without of poly(vinyl pyrrolidone) as well as an anionic surfactant sodium dodecyl sulphate. SEM with EDX facilities and TEM were employed to investigate the size of the nanostructures as well as the morphology of cobalt nanoparticles. The effect of poly(vinyl pyrrolidone) as well as an anionic surfactant-sodium dodecyl sulphate has been observed and found that it was potential candidate for tailoring the size of cobalt nanoparticles. Moreover, poly(vinyl pyrrolidone) were displayed a suitable coating agent for preventing agglomeration during synthesis of cobalt nanoparticles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Yu, A. Mendoza-Garcia, B. Ning and S. Sun, Adv. Mater., 25, 3090 (2013); doi:10.1002/adma.201300595.
- V.F. Puntes, K.M. Krishnan and A.P. Alivisatos, Science, 291, 2115 (2001); doi:10.1126/science.1057553.
- V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord and J. Nogu’es, Nature, 423, 850 (2003); doi:10.1038/nature01687.
- B.K. Pandey, A.K. Shahi, R.K. Swarnkar and R. Gopal, Sci. Adv. Mater., 4, 537 (2012); doi:10.1166/sam.2012.1315.
- A.-H. Lu, E.L. Salabas and F. Schuth, Angew. Chem. Int. Ed., 46, 1222 (2007); doi:10.1002/anie.200602866.
- V.F. Puntes, K. Krishnan and A.P. Alivisatos, Top. Catal., 19, 145 (2002); doi:10.1023/A:1015252904412.
- L. Guo, F. Liang, X.G. Wen, S. Yang, L. He, W. Zheng, C. Chen and Q. Zhong, Adv. Funct. Mater., 17, 425 (2007); doi:10.1002/adfm.200600415.
- S.-H. Liu, H. Gao, E. Ye, M. Low, S.H. Lim, S.-Y. Zhang, X. Lieu, S. Tripathy, W. Tremel and M.-Y. Han, Chem. Commun., 46, 4749 (2010); doi:10.1039/c0cc00242a.
- X. Wang, F. Yuan, P. Hu, L. Yu and L. Bai, J. Phys. Chem. C, 112, 8773 (2008); doi:10.1021/jp0775404.
- F. Cao, R. Deng, J. Tang, S. Song, Y. Lei and H. Zhang, CrystEngComm, 13, 223 (2010); doi:10.1039/c0ce00074d.
- Y. Song, H. Modrow, L.L. Henry, C.K. Saw, E.E. Doomes, V. Palshin, J. Hormes and C.S.S.R. Kumar, Chem. Mater., 18, 2817 (2006); doi:10.1021/cm052811d.
- A. Dakhlaoui, L.S. Smiri, G. Babadjian, F. Schoenstein, P. Molini’e and N. Jouini, J. Phys. Chem. C, 112, 14348 (2008); doi:10.1021/jp804461s.
- D.D. Li, R.S. Thompson, G. Bergmann and J.G. Lu, Adv. Mater., 20, 4575 (2008); doi:10.1002/adma.200801455.
- A.-H. Lu, E.L. Salabas and F. Schuth, Angew. Chem. Int. Ed., 46, 1222 (2007); doi:10.1002/anie.200602866.
- Z.G. Wu, M. Munoz and O. Montero, Adv. Powder Technol., 21, 165 (2010); doi:10.1016/j.apt.2009.10.012.
- K.A. Barnes, A. Karim, J.F. Douglas, A.I. Nakatani, H. Gruell and E.J. Amis, Macromolecules, 33, 4177 (2000); doi:10.1021/ma990614s.
- B.J. Kim, J. Bang, C.J. Hawker and E.J. Kramer, Macromolecules, 39, 4108 (2006); doi:10.1021/ma060308w.
References
Y. Yu, A. Mendoza-Garcia, B. Ning and S. Sun, Adv. Mater., 25, 3090 (2013); doi:10.1002/adma.201300595.
V.F. Puntes, K.M. Krishnan and A.P. Alivisatos, Science, 291, 2115 (2001); doi:10.1126/science.1057553.
V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord and J. Nogu’es, Nature, 423, 850 (2003); doi:10.1038/nature01687.
B.K. Pandey, A.K. Shahi, R.K. Swarnkar and R. Gopal, Sci. Adv. Mater., 4, 537 (2012); doi:10.1166/sam.2012.1315.
A.-H. Lu, E.L. Salabas and F. Schuth, Angew. Chem. Int. Ed., 46, 1222 (2007); doi:10.1002/anie.200602866.
V.F. Puntes, K. Krishnan and A.P. Alivisatos, Top. Catal., 19, 145 (2002); doi:10.1023/A:1015252904412.
L. Guo, F. Liang, X.G. Wen, S. Yang, L. He, W. Zheng, C. Chen and Q. Zhong, Adv. Funct. Mater., 17, 425 (2007); doi:10.1002/adfm.200600415.
S.-H. Liu, H. Gao, E. Ye, M. Low, S.H. Lim, S.-Y. Zhang, X. Lieu, S. Tripathy, W. Tremel and M.-Y. Han, Chem. Commun., 46, 4749 (2010); doi:10.1039/c0cc00242a.
X. Wang, F. Yuan, P. Hu, L. Yu and L. Bai, J. Phys. Chem. C, 112, 8773 (2008); doi:10.1021/jp0775404.
F. Cao, R. Deng, J. Tang, S. Song, Y. Lei and H. Zhang, CrystEngComm, 13, 223 (2010); doi:10.1039/c0ce00074d.
Y. Song, H. Modrow, L.L. Henry, C.K. Saw, E.E. Doomes, V. Palshin, J. Hormes and C.S.S.R. Kumar, Chem. Mater., 18, 2817 (2006); doi:10.1021/cm052811d.
A. Dakhlaoui, L.S. Smiri, G. Babadjian, F. Schoenstein, P. Molini’e and N. Jouini, J. Phys. Chem. C, 112, 14348 (2008); doi:10.1021/jp804461s.
D.D. Li, R.S. Thompson, G. Bergmann and J.G. Lu, Adv. Mater., 20, 4575 (2008); doi:10.1002/adma.200801455.
A.-H. Lu, E.L. Salabas and F. Schuth, Angew. Chem. Int. Ed., 46, 1222 (2007); doi:10.1002/anie.200602866.
Z.G. Wu, M. Munoz and O. Montero, Adv. Powder Technol., 21, 165 (2010); doi:10.1016/j.apt.2009.10.012.
K.A. Barnes, A. Karim, J.F. Douglas, A.I. Nakatani, H. Gruell and E.J. Amis, Macromolecules, 33, 4177 (2000); doi:10.1021/ma990614s.
B.J. Kim, J. Bang, C.J. Hawker and E.J. Kramer, Macromolecules, 39, 4108 (2006); doi:10.1021/ma060308w.