Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization and Antimicrobial Activity of 3-Acetyl-4-hydroxy-6-methyl-(2H)pyran-2-one Schiff Base with 2,2'-(Ethylenedioxy)diethylamine and its Co(II), Ni(II) and Cu(II) Complexes
Corresponding Author(s) : Jonnie N. Asegbeloyin
Asian Journal of Chemistry,
Vol. 27 No. 9 (2015): Vol 27 Issue 9
Abstract
A Schiff base was synthesized by the interaction of 3-acetyl-4-hydroxy-6-methyl-(2H)pyran-2-one with 2,2'-(ethylenedioxy)diethyl-amine in ethanolic medium. The ligand was characterized on the basis of elemental analysis, infrared, 1H and 13C NMR spectra. Cobalt(II), Ni(II) and Cu(II) complexes of the type ML(H2O)2 were prepared by interaction of the metal(II) halides with hot ethanolic solution of the Schiff base. The complexes were characterized by elemental analysis, molar conductance, magnetic measurements, infrared and electronic spectral studies. Results show that the ligand behaved as dibasic tetradentate molecule, coordinating via imino nitrogens and the enolic oxygens, to form six-coordinate octahedral metal complexes. The compounds were screened for in vitro antimicrobial activity against some bacteria and yeasts. Results showed that some of the compounds are active against few microbes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Battaini, E. Monzani, L. Casella, L. Santagostini and R. Pagliarin, J. Biol. Inorg. Chem., 5, 262 (2000); doi:10.1007/s007750050370.
- D.T. Puerta and S.M. Cohen, Inorg. Chem., 42, 3423 (2003); doi:10.1021/ic026029g.
- P.V. Rao and A.V. Narasaiah, Indian J. Chem., 42A, 1896 (2003).
- M. Zucolotto Chalaça, J.D. Figueroa-Villar, J.A. Ellena and E.E. Castellano, Inorg. Chim. Acta, 328, 45 (2002); doi:10.1016/S0020-1693(01)00672-7.
- D.M. Fouad, A. Rayoumi, M.A. El-Gahami and S.A. Ibrahim, Natural Sci., 2, 817 (2010); doi:10.4236/ns.2010.28103.
- D.S. Rao, M.C. Ganorkar, D.L.S. Rao and V.T. John, Nat. Acad. Sci. Lett., 1, 402 (1978).
- A.A. Kubaisi and K.Z. Ismail, Can. J. Chem., 72, 1785 (1994); doi:10.1139/v94-226.
- P.S. Deshmukh, A.R. Yaul, J.N. Bhojane and A.S. Aswar, World Appl. Sci. J., 9, 1301 (2010).
- S. Liu, S.J. Rettig and C. Orvig, Inorg. Chem., 30, 4915 (1991); doi:10.1021/ic00026a013.
- A.S. Munde, A.N. Jagdale, S.M. Jadhav and T.K. Chondhekar, J. Serb. Chem. Soc., 75, 349 (2010); doi:10.2298/JSC090408009M.
- H.M. Faidallah, K.A. Khan and A.M. Asiri, Eur. J. Chem., 2, 243 (2011); doi:10.5155/eurjchem.2.2.243-250.257.
- V. Vrdoljak, B. Prugovecki, M. Cindric, D. Matkovic-Calogovic and A. Brbot-Saranovic, Acta Chim. Slov., 55, 828 (2008).
- A.A. Kubaisi and K.Z. Ismail, Can. J. Chem., 72, 1785 (1994); doi:10.1139/v94-226.
- N.R. Rao, V.J.T. Raju, P.V. Rao and M.C. Ganorkar, Nat. Acad. Sci. Lett., 8, 343 (1985).
- B.S. Garg, R. Dixit and I. Das, Proc. Indian Acad. Sci., 102, 497 (1990).
- Z. Cimerman, S. Miljanic and N. Galic, Croat. Chem. Acta, 73, 81 (2000).
- P. Singh, R.L. Goel and B.P. Singh, J. Indian Chem. Soc., 52, 958 (1975).
- B.F. Perry, A.E. Beezer, R.J. Miles, B.W. Smith, J. Miller and M.G. Nascimento, Microbois, 45, 181 (1988).
- A. Elmali, M. Kabak and Y. Elerman, J. Mol. Struct., 477, 151 (2000);
- doi:10.1016/S0022-2860(98)00604-8.
- P.R. Patel, B.T. Thaker and S. Zele, Indian J. Chem., 38A, 563 (1999).
- W. Zishen, L. Zhiping and Y. Zhenhuan, Transition Metal Chem., 18, 291 (1993); doi:10.1007/BF00207949.
- P.K. Radhakrishnan, Polyhedron, 5, 995 (1986); doi:10.1016/S0277-5387(00)80141-2.
- N.K. Singh, A. Srivastava, A. Sodhi and P. Ranjan, Transition Met. Chem., 25, 133 (2000); doi:10.1023/A:1007081218000.
- S. Kumar, N.D. Dhar and N.P. Saxena, J. Sci. Ind. Res. (India), 68, 181 (2009).
- P.G. Cozzi, Chem. Soc. Rev., 33, 410 (2004); doi:10.1039/b307853c.
- A.E. Liberta and D.X. West, Biometals, 5, 121 (1992); doi:10.1007/BF01062223.
- J.N. Asegbeloyin, E.C. Okafor, N.N. Ukwueze, I. Babahan and I.C. Agbo, Asian J. Chem., 26, 2753 (2014); doi:10.14233/ajchem.2014.16572.
- J.N. Asegbeloyin, E.C. Okafor and I. Babahan, J. Chem. Soc. Nigeria, 39, 25 (2014).
- J.N. Asegbeloyin, O.T. Ujam, E.C. Okafor, I. Babahan, E.P. Coban, A. Ozmen and H. Biyik, Bioinorg. Chem. Appl., Article ID 718175 (2014); doi:10.1155/2014/718175.
- C.H. Collins, P.M. Lyre and J.M. Grange, Microbiological Methods, Butterworths, London, edn 7 (1989).
- NCCLS Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard NCCLS Publication, Villanova, PA, USA, M2- A51-32 (1993).
- R.C. Aggarwal and T.R. Tao, Curr. Sci., 46, 625 (1977).
- B.S. Garg and I. Kapur, Inorg. Chim. Acta, 173, 223 (1990); doi:10.1016/S0020-1693(00)80217-0.
- R. Sreekala and K.K. Mohammed Yusuff, Synth. React. Inorg. Met. Org. Chem., 24, 1773 (1994); doi:10.1080/00945719408003172.
- P.S. Deshmukh, A.R. Yaul, J.N. Bhojane and A.S. Aswar, World J. Chem., 5, 57 (2010).
- K.H. Reddy and M.R. Reddy, Indian J. Chem. Soc., 79, 219 (2002).
- P.B. Sreeja and M.R.P. Kurup, Spectrochim. Acta A, 61, 331 (2005); doi:10.1016/j.saa.2004.04.001.
- A.P. Mishra and L.R. Pandey, Indian J. Chem., 44A, 1800 (2005).
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A and Part B, John Wiley & Sons, New York (1998)..
- V.N. Patange, A.R. Arbad, V.G. Mane and S.D. Salunke, Transisition Met. Chem., 32, 944 (2007); doi:10.1007/s11243-007-0261-z.
- K. Nakamoto, Infrared of Spectra of Inorganic and Coordination Compounds, Wiley Interscience, New York (1970).
- H.M. Parekh, P.K. Panchal and M.N. Patel, J. Therm. Anal. Calorim., 86, 803 (2006); doi:10.1007/s10973-005-7284-5.
- A.S. Munde, A.N. Jagdale, S.M. Jadhav and T.K. Chondhekar, J. Korean Chem. Soc., 53, 407 (2009); doi:10.5012/jkcs.2009.53.4.407.
- G.M. Gehad, M.M. Omar and A.M. Hindy, Turk. J. Chem., 30, 361 (2006).
- J.D. Lee, Concise Inorganic Chemistry, Blackwell Science Ltd, Oxford, edn 5 (1996).
- G.L. Miessler and D.A. Tarr, Inorganic Chemistry, Prentice-Hall, Inc., New Jersey, edn 2 (1999).
- C.J. Ballhauseu, An Introduction to Ligand Field Theory, McGraw Hill, New York (1962).
- N. Raman, S. Ravichandran and C. Thangaraja, J. Chem. Sci., 116, 215 (2004); doi:10.1007/BF02708270.
- B.G. Tweedy, Phytopathology, 55, 910 (1964).
- K. Kralova, K. Kissova, O. Svajlenova and J. Vanco, Chem. Pap., 58, 357 (2004).
- J. Parekh, P. Inamdhar, R. Nair, S. Baluja and S. Chanda, J. Serb. Chem. Soc., 70, 1155 (2005); doi:10.2298/JSC0510155P.
- V. Kuete, B. Ngameni, B. Wiench, B. Krusche, C. Horwedel, B.T. Ngadjui and T. Efferth, Planta Med., 77, 1984 (2011); doi:10.1055/s-0031-1280023.
References
G. Battaini, E. Monzani, L. Casella, L. Santagostini and R. Pagliarin, J. Biol. Inorg. Chem., 5, 262 (2000); doi:10.1007/s007750050370.
D.T. Puerta and S.M. Cohen, Inorg. Chem., 42, 3423 (2003); doi:10.1021/ic026029g.
P.V. Rao and A.V. Narasaiah, Indian J. Chem., 42A, 1896 (2003).
M. Zucolotto Chalaça, J.D. Figueroa-Villar, J.A. Ellena and E.E. Castellano, Inorg. Chim. Acta, 328, 45 (2002); doi:10.1016/S0020-1693(01)00672-7.
D.M. Fouad, A. Rayoumi, M.A. El-Gahami and S.A. Ibrahim, Natural Sci., 2, 817 (2010); doi:10.4236/ns.2010.28103.
D.S. Rao, M.C. Ganorkar, D.L.S. Rao and V.T. John, Nat. Acad. Sci. Lett., 1, 402 (1978).
A.A. Kubaisi and K.Z. Ismail, Can. J. Chem., 72, 1785 (1994); doi:10.1139/v94-226.
P.S. Deshmukh, A.R. Yaul, J.N. Bhojane and A.S. Aswar, World Appl. Sci. J., 9, 1301 (2010).
S. Liu, S.J. Rettig and C. Orvig, Inorg. Chem., 30, 4915 (1991); doi:10.1021/ic00026a013.
A.S. Munde, A.N. Jagdale, S.M. Jadhav and T.K. Chondhekar, J. Serb. Chem. Soc., 75, 349 (2010); doi:10.2298/JSC090408009M.
H.M. Faidallah, K.A. Khan and A.M. Asiri, Eur. J. Chem., 2, 243 (2011); doi:10.5155/eurjchem.2.2.243-250.257.
V. Vrdoljak, B. Prugovecki, M. Cindric, D. Matkovic-Calogovic and A. Brbot-Saranovic, Acta Chim. Slov., 55, 828 (2008).
A.A. Kubaisi and K.Z. Ismail, Can. J. Chem., 72, 1785 (1994); doi:10.1139/v94-226.
N.R. Rao, V.J.T. Raju, P.V. Rao and M.C. Ganorkar, Nat. Acad. Sci. Lett., 8, 343 (1985).
B.S. Garg, R. Dixit and I. Das, Proc. Indian Acad. Sci., 102, 497 (1990).
Z. Cimerman, S. Miljanic and N. Galic, Croat. Chem. Acta, 73, 81 (2000).
P. Singh, R.L. Goel and B.P. Singh, J. Indian Chem. Soc., 52, 958 (1975).
B.F. Perry, A.E. Beezer, R.J. Miles, B.W. Smith, J. Miller and M.G. Nascimento, Microbois, 45, 181 (1988).
A. Elmali, M. Kabak and Y. Elerman, J. Mol. Struct., 477, 151 (2000);
doi:10.1016/S0022-2860(98)00604-8.
P.R. Patel, B.T. Thaker and S. Zele, Indian J. Chem., 38A, 563 (1999).
W. Zishen, L. Zhiping and Y. Zhenhuan, Transition Metal Chem., 18, 291 (1993); doi:10.1007/BF00207949.
P.K. Radhakrishnan, Polyhedron, 5, 995 (1986); doi:10.1016/S0277-5387(00)80141-2.
N.K. Singh, A. Srivastava, A. Sodhi and P. Ranjan, Transition Met. Chem., 25, 133 (2000); doi:10.1023/A:1007081218000.
S. Kumar, N.D. Dhar and N.P. Saxena, J. Sci. Ind. Res. (India), 68, 181 (2009).
P.G. Cozzi, Chem. Soc. Rev., 33, 410 (2004); doi:10.1039/b307853c.
A.E. Liberta and D.X. West, Biometals, 5, 121 (1992); doi:10.1007/BF01062223.
J.N. Asegbeloyin, E.C. Okafor, N.N. Ukwueze, I. Babahan and I.C. Agbo, Asian J. Chem., 26, 2753 (2014); doi:10.14233/ajchem.2014.16572.
J.N. Asegbeloyin, E.C. Okafor and I. Babahan, J. Chem. Soc. Nigeria, 39, 25 (2014).
J.N. Asegbeloyin, O.T. Ujam, E.C. Okafor, I. Babahan, E.P. Coban, A. Ozmen and H. Biyik, Bioinorg. Chem. Appl., Article ID 718175 (2014); doi:10.1155/2014/718175.
C.H. Collins, P.M. Lyre and J.M. Grange, Microbiological Methods, Butterworths, London, edn 7 (1989).
NCCLS Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard NCCLS Publication, Villanova, PA, USA, M2- A51-32 (1993).
R.C. Aggarwal and T.R. Tao, Curr. Sci., 46, 625 (1977).
B.S. Garg and I. Kapur, Inorg. Chim. Acta, 173, 223 (1990); doi:10.1016/S0020-1693(00)80217-0.
R. Sreekala and K.K. Mohammed Yusuff, Synth. React. Inorg. Met. Org. Chem., 24, 1773 (1994); doi:10.1080/00945719408003172.
P.S. Deshmukh, A.R. Yaul, J.N. Bhojane and A.S. Aswar, World J. Chem., 5, 57 (2010).
K.H. Reddy and M.R. Reddy, Indian J. Chem. Soc., 79, 219 (2002).
P.B. Sreeja and M.R.P. Kurup, Spectrochim. Acta A, 61, 331 (2005); doi:10.1016/j.saa.2004.04.001.
A.P. Mishra and L.R. Pandey, Indian J. Chem., 44A, 1800 (2005).
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A and Part B, John Wiley & Sons, New York (1998)..
V.N. Patange, A.R. Arbad, V.G. Mane and S.D. Salunke, Transisition Met. Chem., 32, 944 (2007); doi:10.1007/s11243-007-0261-z.
K. Nakamoto, Infrared of Spectra of Inorganic and Coordination Compounds, Wiley Interscience, New York (1970).
H.M. Parekh, P.K. Panchal and M.N. Patel, J. Therm. Anal. Calorim., 86, 803 (2006); doi:10.1007/s10973-005-7284-5.
A.S. Munde, A.N. Jagdale, S.M. Jadhav and T.K. Chondhekar, J. Korean Chem. Soc., 53, 407 (2009); doi:10.5012/jkcs.2009.53.4.407.
G.M. Gehad, M.M. Omar and A.M. Hindy, Turk. J. Chem., 30, 361 (2006).
J.D. Lee, Concise Inorganic Chemistry, Blackwell Science Ltd, Oxford, edn 5 (1996).
G.L. Miessler and D.A. Tarr, Inorganic Chemistry, Prentice-Hall, Inc., New Jersey, edn 2 (1999).
C.J. Ballhauseu, An Introduction to Ligand Field Theory, McGraw Hill, New York (1962).
N. Raman, S. Ravichandran and C. Thangaraja, J. Chem. Sci., 116, 215 (2004); doi:10.1007/BF02708270.
B.G. Tweedy, Phytopathology, 55, 910 (1964).
K. Kralova, K. Kissova, O. Svajlenova and J. Vanco, Chem. Pap., 58, 357 (2004).
J. Parekh, P. Inamdhar, R. Nair, S. Baluja and S. Chanda, J. Serb. Chem. Soc., 70, 1155 (2005); doi:10.2298/JSC0510155P.
V. Kuete, B. Ngameni, B. Wiench, B. Krusche, C. Horwedel, B.T. Ngadjui and T. Efferth, Planta Med., 77, 1984 (2011); doi:10.1055/s-0031-1280023.