Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Studies on Novel Zwitterionic Hybrid Membranes: Adsorption Kinetic Models for Cobalt(II) Removal
Corresponding Author(s) : Junsheng Liu
Asian Journal of Chemistry,
Vol. 27 No. 9 (2015): Vol 27 Issue 9
Abstract
A zwitterionic hybrid membrane was prepared via the ring-opening of 1,3-propanesultone with the amine groups in the chains of 3-aminopropyl trimethoxysilane and a subsequent sol-gel process. Its adsorption performances for cobalt(II) removal were examined. On the basis of adsorption capacity of cobalt(II) ions on contact time, two-parameter kinetic equations were determined to evaluate the adaptivity of the fitted model. It was found that the adsorption of cobalt(II) ions on the prepared hybrid membrane fitted well with the Lagergren pseudo-second order model. The measurement of intraparticle diffusion confirmed that the adsorption of cobalt(II) ions on the hybrid membrane didn't only governed by intraparticle diffusion. Elovich model evidences that chemisorption didn't occur during the period of cobalt(II) removal. These findings are very useful in the removal of cobalt(II) ions from the stimulated radioactive wastewater and can be potentially used to dispose the radionuclide from the spent radioactive wastewater.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Cheng, Z. Gao, W. Ma, Q. Sun, B. Wang and X. Wang, Chem. Eng. J., 209, 451 (2012); doi:10.1016/j.cej.2012.07.078.
- Y. Chen and J. Wang, Nucl. Eng. Des., 242, 445 (2012); doi:10.1016/j.nucengdes.2011.10.059.
- H. Altomonte, IEEE Power Energy Magazine, 10, 96 (2012).
- F. Gralla, D.J. Abson, A.P. Møller, D.J. Lang and H. Von Wehrden, Ecol. Indic., 41, 1 (2014); doi:10.1016/j.ecolind.2014.01.027.
- D. Rana, T. Matsuura, M.A. Kassim and A.F. Ismail, Desalination, 321, 77 (2013); doi:10.1016/j.desal.2012.11.007.
- C. Chen, D. Xu, X. Tan and X. Wang, J. Radioanal. Nucl. Chem., 273, 227 (2007); doi:10.1007/s10967-007-0741-9.
- H. Zhang, L.P. Zhang, X.J. Yu, Y.H. Dong and X.K. Wang, J. Nucl. Radiochem., 33, 167 (2011).
- L.N. Oji, K.B. Martin and D.T. Hobbs, J. Radioanal. Nucl. Chem., 279, 847 (2009); doi:10.1007/s10967-008-7365-6.
- Y. Park, Y.-C. Lee, W.S. Shin and S.-J. Choi, Chem. Eng. J., 162, 685 (2010); doi:10.1016/j.cej.2010.06.026.
- Y.P. Zhang, X. Wang, J.S. Liu and L.L. Wu, J. Chem. Eng. Data, 58, 1141 (2013); doi:10.1021/je301168m.
- J.S. Liu, J.Y. Si, Q. Zhang, J.H. Zheng, C.L. Han and G.Q. Shao, Ind. Eng. Chem. Res., 50, 8645 (2011); doi:10.1021/ie200023b.
- J.S. Liu, L. Song and G.Q. Shao, J. Chem. Eng. Data, 56, 2119 (2011); doi:10.1021/je1011949.
- G.P. Kumar, P.A. Kumar, S. Chakraborty and M. Ray, Sep. Purif. Technol., 57, 47 (2007); doi:10.1016/j.seppur.2007.03.003.
- D. Mohan and K.P. Singh, Water Res., 36, 2304 (2002); doi:10.1016/S0043-1354(01)00447-X.
- Y. Zhu, J. Hu and J. Wang, Prog. Nucl. Energy, 71, 172 (2014); doi:10.1016/j.pnucene.2013.12.005.
- A.A. Atia, A.M. Donia and A.M. Yousif, Sep. Purif. Technol., 61, 348 (2008); doi:10.1016/j.seppur.2007.11.008.
- E. Guibal, C. Milot and J.M. Tobin, Ind. Eng. Chem. Res., 37, 1454 (1998); doi:10.1021/ie9703954.
- X.S. Wang, Z.P. Lu, H.H. Miao, W. He and H.L. Shen, Chem. Eng. J., 166, 986 (2011); doi:10.1016/j.cej.2010.11.089.
- S.H. Chien and W.R. Clayton, Soil Sci. Soc. Am. J., 44, 265 (1980); doi:10.2136/sssaj1980.03615995004400020013x.
- T.S. Anirudhan and P.G. Radhakrishnan, Desalination, 249, 1298 (2009); doi:10.1016/j.desal.2009.06.028.
References
Z. Cheng, Z. Gao, W. Ma, Q. Sun, B. Wang and X. Wang, Chem. Eng. J., 209, 451 (2012); doi:10.1016/j.cej.2012.07.078.
Y. Chen and J. Wang, Nucl. Eng. Des., 242, 445 (2012); doi:10.1016/j.nucengdes.2011.10.059.
H. Altomonte, IEEE Power Energy Magazine, 10, 96 (2012).
F. Gralla, D.J. Abson, A.P. Møller, D.J. Lang and H. Von Wehrden, Ecol. Indic., 41, 1 (2014); doi:10.1016/j.ecolind.2014.01.027.
D. Rana, T. Matsuura, M.A. Kassim and A.F. Ismail, Desalination, 321, 77 (2013); doi:10.1016/j.desal.2012.11.007.
C. Chen, D. Xu, X. Tan and X. Wang, J. Radioanal. Nucl. Chem., 273, 227 (2007); doi:10.1007/s10967-007-0741-9.
H. Zhang, L.P. Zhang, X.J. Yu, Y.H. Dong and X.K. Wang, J. Nucl. Radiochem., 33, 167 (2011).
L.N. Oji, K.B. Martin and D.T. Hobbs, J. Radioanal. Nucl. Chem., 279, 847 (2009); doi:10.1007/s10967-008-7365-6.
Y. Park, Y.-C. Lee, W.S. Shin and S.-J. Choi, Chem. Eng. J., 162, 685 (2010); doi:10.1016/j.cej.2010.06.026.
Y.P. Zhang, X. Wang, J.S. Liu and L.L. Wu, J. Chem. Eng. Data, 58, 1141 (2013); doi:10.1021/je301168m.
J.S. Liu, J.Y. Si, Q. Zhang, J.H. Zheng, C.L. Han and G.Q. Shao, Ind. Eng. Chem. Res., 50, 8645 (2011); doi:10.1021/ie200023b.
J.S. Liu, L. Song and G.Q. Shao, J. Chem. Eng. Data, 56, 2119 (2011); doi:10.1021/je1011949.
G.P. Kumar, P.A. Kumar, S. Chakraborty and M. Ray, Sep. Purif. Technol., 57, 47 (2007); doi:10.1016/j.seppur.2007.03.003.
D. Mohan and K.P. Singh, Water Res., 36, 2304 (2002); doi:10.1016/S0043-1354(01)00447-X.
Y. Zhu, J. Hu and J. Wang, Prog. Nucl. Energy, 71, 172 (2014); doi:10.1016/j.pnucene.2013.12.005.
A.A. Atia, A.M. Donia and A.M. Yousif, Sep. Purif. Technol., 61, 348 (2008); doi:10.1016/j.seppur.2007.11.008.
E. Guibal, C. Milot and J.M. Tobin, Ind. Eng. Chem. Res., 37, 1454 (1998); doi:10.1021/ie9703954.
X.S. Wang, Z.P. Lu, H.H. Miao, W. He and H.L. Shen, Chem. Eng. J., 166, 986 (2011); doi:10.1016/j.cej.2010.11.089.
S.H. Chien and W.R. Clayton, Soil Sci. Soc. Am. J., 44, 265 (1980); doi:10.2136/sssaj1980.03615995004400020013x.
T.S. Anirudhan and P.G. Radhakrishnan, Desalination, 249, 1298 (2009); doi:10.1016/j.desal.2009.06.028.