Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Theoretical and Computational Study of Tautomerization of Ketenimine to Acetonitrile
Corresponding Author(s) : O.I. Osman
Asian Journal of Chemistry,
Vol. 27 No. 8 (2015): Vol 27 Issue 8
Abstract
ab initio electronic structure computations employing MP2, DFT(B3LYP) and CCSD methods with
6-311++G**, aug-cc-pvdz and aug-cc-pvtz basis sets have been performed for the equilibrium
geometries and transition state involved in the interconversion between ketenimine (I) and acetonitrile
(II). A direct unimolecular 1,3-hydrogen shift pathway for the ketenimine acetonitrile rearrangement
was proposed. The activation energies of this mechanistic route range between 57.066 and 71.489
kcal/mol. They are in excellent agreement with the reported experimental value. The proposed
tautomerization route was also supported by thermodynamic and natural bond orbital analyses.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.S.T. Morin, D.J. St-Cyr, B.A. Arndtsen, E.H. Krenske and K.N. Houk, J. Am. Chem. Soc., 135, 17349 (2013); doi:10.1021/ja406833q.
- E. Zhang, H. Tian, S. Xu, X. Yu and Q. Xu, Org. Lett., 15, 2704 (2013); doi:10.1021/ol4010118.
- M.S.T. Morin, Y. Lu, D.A. Black and B.A. Arndtsen, J. Org. Chem., 77, 2013 (2012); doi:10.1021/jo202339v.
- J.P. Ferris and W.J. Hagan Jr., Tetrahedron, 40, 1093 (1984); doi:10.1016/S0040-4020(01)99315-9.
- E. Herbst, Angew. Chem. Int. Ed., 29, 595 (1999); doi:10.1002/anie.199005951.
- R.L. Hudson and M.H. Moore, Icarus, 172, 466 (2004); doi:10.1016/j.icarus.2004.06.011.
- M.E. Milligan, J. Chem. Phys., 35, 1491 (1961); doi:10.1063/1.1732070.
- D.R. Johnson and F.J. Lovas, Chem. Phys. Lett., 15, 65 (1972); doi:10.1016/0009-2614(72)87017-9.
- J.M. Dyke, A.P. Groves, A. Morris, J.S. Ogden, A.A. Dias, A.M.S Oliveira, M.L. Costa, M.T. Barros, M.H. Cabral and A.M.C. Moutinho, J. Am. Chem. Soc., 119, 6883 (1997); doi:10.1021/ja964354v.
- P.D. Godfrey, R.D. Brown, B.J. Robinson and M.W. Sinclair, Astrophys. J. Lett., 13, 119 (1973).
- Y.N. Panchenko, S.V. Krasnoshchiokov and C.W. Bock, J. Comput. Chem., 9, 443 (1988); doi:10.1002/jcc.540090502.
- 12NguyenSengupta. M.T. Nguyen, D. Sengupta and T.-K. Ha, J. Phys. Chem., 100, 6499 (1996); doi:10.1021/jp953022u.
- J. Zhou and H.B. Schlegel, J. Phys. Chem. A, 113, 9958 (2009); doi:10.1021/jp905420v.
- R.D. Brown, E.H.N. Rice and M. Rodler, Chem. Phys., 99, 347 (1985); doi:10.1016/0301-0104(85)80175-0.
- M.E. Jacox and D.E. Milligan, J. Am. Chem. Soc., 85, 278 (1963); doi:10.1021/ja00886a006.
- M. Rodler, R.D. Brown, P.D. Godfrey and L.M. Tack, Chem. Phys. Lett., 110, 447 (1984); doi:10.1016/0009-2614(84)87068-2.
- H.W. Kroto, G.Y. Matti, R.J. Suffolk, J.D. Watts, M. Rittby and R.J. Bartlett, J. Am. Chem. Soc., 112, 3779 (1990); doi:10.1021/ja00166a011.
- L.L. Lohr, M. Hanamura and K. Morokuma, J. Am. Chem. Soc., 105, 5541 (1983); doi:10.1021/ja00355a003.
- A. Doughty, G.B. Bacskay and J.C. Mackie, J. Phys. Chem., 98, 13546 (1994); doi:10.1021/j100102a020.
- O.I. Osman, Ph.D. Thesis, University of Sussex (1986).
- O.I. Osman, J. Phys. Chem. A, 118, 10934 (2014); doi:10.1021/jp507397x.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2009).
- R.S. Berry, P. Davidovits and D.L. McFadden, In Alkali Halide Vapors, Academic Press, New York (1979).
- K. Fukui, Acc. Chem. Res., 14, 363 (1981); doi:10.1021/ar00072a001.
- R. Dennington, T. Keith and J. Millam, GaussView, Version 5; Semichem Inc.: Shawnee Mission, KS, USA (2009).
- Geomodeling in GeoGraphix, Available online: http://www.chemcraftprog.com (accessed on 26 May 2014).
- E.A. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); doi:10.1021/cr00088a005.
- J.D. Watts, D.J. Watts and M.-L. Huang, J. Phys. Chem. A, 113, 1886 (2009); doi:10.1021/jp808638s.
- M. Rodler, R.D. Brown, P.D. Godfrey and B. Kleibomer, J. Mol. Spectrosc., 118, 267 (1986); doi:10.1016/0022-2852(86)90240-7.
- M. Kessler, H. Ring, R. Trambarulo and W. Gordy, Phys. Rev., 79, 54 (1950); doi:10.1103/PhysRev.79.54.
- P.J. Linstrom and W.G. Mallard, eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg MD; http://webbook.nist.gov (retrieved April 22, 2012).
- M. Yasumoto, H. Ueki and V.A. Soloshonok, J. Fluor. Chem., 128, 736 (2007); doi:10.1016/j.jfluchem.2007.02.008.
- A. Basak, S.N. Gupta, K. Chakrabarty and G.K. Das, Compt. Theor. Chem., 1007, 15 (2013); doi:10.1016/j.comptc.2012.12.005.
- T. Kakumoto, T. Ushirogouchi, K. Saito and A. Imamura, J. Phys. Chem., 91, 183 (1987); doi:10.1021/j100285a040.
- A. Lifshitz, M. Frenklach and A. Burcat, J. Phys. Chem., 79, 1148 (1975); doi:10.1021/j100579a002.
- E.A. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); doi:10.1021/cr00088a005.
- E.A. Reed and F. Weinhold, J. Chem. Phys., 78, 4066 (1983); doi:10.1063/1.445134.
- L. Song, Y. Lin, W. Wu, Q. Zhang and Y. Mo, J. Phys. Chem. A, 109, 2310 (2005); doi:10.1021/jp044700s.
- T. Yamamoto, D. Kaneno and D. Tomoda, Bull. Chem. Soc. Jpn., 81, 1415 (2008); doi:10.1246/bcsj.81.1415.
- M. Yoshimine, J. Pacansky and N. Honjou, J. Am. Chem. Soc., 111, 4198 (1989); doi:10.1021/ja00194a008.
- C. Wentrup, C.M. Nunes and I. Reva, J. Phys. Chem. A, 118, 5122 (2014); doi:10.1021/jp503958z.
- J.N. Bradley and K.O. West, J. Chem. Soc., Faraday Trans. I, 71, 967 (1975); doi:10.1039/f19757100967.
References
M.S.T. Morin, D.J. St-Cyr, B.A. Arndtsen, E.H. Krenske and K.N. Houk, J. Am. Chem. Soc., 135, 17349 (2013); doi:10.1021/ja406833q.
E. Zhang, H. Tian, S. Xu, X. Yu and Q. Xu, Org. Lett., 15, 2704 (2013); doi:10.1021/ol4010118.
M.S.T. Morin, Y. Lu, D.A. Black and B.A. Arndtsen, J. Org. Chem., 77, 2013 (2012); doi:10.1021/jo202339v.
J.P. Ferris and W.J. Hagan Jr., Tetrahedron, 40, 1093 (1984); doi:10.1016/S0040-4020(01)99315-9.
E. Herbst, Angew. Chem. Int. Ed., 29, 595 (1999); doi:10.1002/anie.199005951.
R.L. Hudson and M.H. Moore, Icarus, 172, 466 (2004); doi:10.1016/j.icarus.2004.06.011.
M.E. Milligan, J. Chem. Phys., 35, 1491 (1961); doi:10.1063/1.1732070.
D.R. Johnson and F.J. Lovas, Chem. Phys. Lett., 15, 65 (1972); doi:10.1016/0009-2614(72)87017-9.
J.M. Dyke, A.P. Groves, A. Morris, J.S. Ogden, A.A. Dias, A.M.S Oliveira, M.L. Costa, M.T. Barros, M.H. Cabral and A.M.C. Moutinho, J. Am. Chem. Soc., 119, 6883 (1997); doi:10.1021/ja964354v.
P.D. Godfrey, R.D. Brown, B.J. Robinson and M.W. Sinclair, Astrophys. J. Lett., 13, 119 (1973).
Y.N. Panchenko, S.V. Krasnoshchiokov and C.W. Bock, J. Comput. Chem., 9, 443 (1988); doi:10.1002/jcc.540090502.
12NguyenSengupta. M.T. Nguyen, D. Sengupta and T.-K. Ha, J. Phys. Chem., 100, 6499 (1996); doi:10.1021/jp953022u.
J. Zhou and H.B. Schlegel, J. Phys. Chem. A, 113, 9958 (2009); doi:10.1021/jp905420v.
R.D. Brown, E.H.N. Rice and M. Rodler, Chem. Phys., 99, 347 (1985); doi:10.1016/0301-0104(85)80175-0.
M.E. Jacox and D.E. Milligan, J. Am. Chem. Soc., 85, 278 (1963); doi:10.1021/ja00886a006.
M. Rodler, R.D. Brown, P.D. Godfrey and L.M. Tack, Chem. Phys. Lett., 110, 447 (1984); doi:10.1016/0009-2614(84)87068-2.
H.W. Kroto, G.Y. Matti, R.J. Suffolk, J.D. Watts, M. Rittby and R.J. Bartlett, J. Am. Chem. Soc., 112, 3779 (1990); doi:10.1021/ja00166a011.
L.L. Lohr, M. Hanamura and K. Morokuma, J. Am. Chem. Soc., 105, 5541 (1983); doi:10.1021/ja00355a003.
A. Doughty, G.B. Bacskay and J.C. Mackie, J. Phys. Chem., 98, 13546 (1994); doi:10.1021/j100102a020.
O.I. Osman, Ph.D. Thesis, University of Sussex (1986).
O.I. Osman, J. Phys. Chem. A, 118, 10934 (2014); doi:10.1021/jp507397x.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2009).
R.S. Berry, P. Davidovits and D.L. McFadden, In Alkali Halide Vapors, Academic Press, New York (1979).
K. Fukui, Acc. Chem. Res., 14, 363 (1981); doi:10.1021/ar00072a001.
R. Dennington, T. Keith and J. Millam, GaussView, Version 5; Semichem Inc.: Shawnee Mission, KS, USA (2009).
Geomodeling in GeoGraphix, Available online: http://www.chemcraftprog.com (accessed on 26 May 2014).
E.A. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); doi:10.1021/cr00088a005.
J.D. Watts, D.J. Watts and M.-L. Huang, J. Phys. Chem. A, 113, 1886 (2009); doi:10.1021/jp808638s.
M. Rodler, R.D. Brown, P.D. Godfrey and B. Kleibomer, J. Mol. Spectrosc., 118, 267 (1986); doi:10.1016/0022-2852(86)90240-7.
M. Kessler, H. Ring, R. Trambarulo and W. Gordy, Phys. Rev., 79, 54 (1950); doi:10.1103/PhysRev.79.54.
P.J. Linstrom and W.G. Mallard, eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg MD; http://webbook.nist.gov (retrieved April 22, 2012).
M. Yasumoto, H. Ueki and V.A. Soloshonok, J. Fluor. Chem., 128, 736 (2007); doi:10.1016/j.jfluchem.2007.02.008.
A. Basak, S.N. Gupta, K. Chakrabarty and G.K. Das, Compt. Theor. Chem., 1007, 15 (2013); doi:10.1016/j.comptc.2012.12.005.
T. Kakumoto, T. Ushirogouchi, K. Saito and A. Imamura, J. Phys. Chem., 91, 183 (1987); doi:10.1021/j100285a040.
A. Lifshitz, M. Frenklach and A. Burcat, J. Phys. Chem., 79, 1148 (1975); doi:10.1021/j100579a002.
E.A. Reed, L.A. Curtiss and F. Weinhold, Chem. Rev., 88, 899 (1988); doi:10.1021/cr00088a005.
E.A. Reed and F. Weinhold, J. Chem. Phys., 78, 4066 (1983); doi:10.1063/1.445134.
L. Song, Y. Lin, W. Wu, Q. Zhang and Y. Mo, J. Phys. Chem. A, 109, 2310 (2005); doi:10.1021/jp044700s.
T. Yamamoto, D. Kaneno and D. Tomoda, Bull. Chem. Soc. Jpn., 81, 1415 (2008); doi:10.1246/bcsj.81.1415.
M. Yoshimine, J. Pacansky and N. Honjou, J. Am. Chem. Soc., 111, 4198 (1989); doi:10.1021/ja00194a008.
C. Wentrup, C.M. Nunes and I. Reva, J. Phys. Chem. A, 118, 5122 (2014); doi:10.1021/jp503958z.
J.N. Bradley and K.O. West, J. Chem. Soc., Faraday Trans. I, 71, 967 (1975); doi:10.1039/f19757100967.