Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Growth and Characterization of N,N'-Dimethylurea Admixtured Sulphamic acid Single Crystals
Corresponding Author(s) : R. Sreedevi
Asian Journal of Chemistry,
Vol. 27 No. 7 (2015): Vol 27 Issue 7, 2015
Abstract
The single crystals of N,N´-dimethylurea admixtured sulphamic acid (DMUASA) were grown by slow evaporation technique from an aqueous solution at room temperature. Good quality crystals of size 34 mm × 15 mm × 7 mm had been obtained within 30 days. To synthesise the N,N´-dimethylurea admixtured sulphamic acid salt, N,N´-dimethylurea and sulphamic acid were taken in 1:1 molar ratio. The solubility of N,N´-dimethylurea admixtured sulphamic acid salt in water had been carried out at various temperatures. The grown crystal was characterized by single crystal X-ray diffraction analysis to confirm the structure of sample. Powder X-ray diffraction studies confirm the crystalline nature of the grown crystals. Fourier transform infrared study was used to confirm the presence of various functional groups in the grown crystal. UV-visible-NIR transmittance spectrum was recorded to study the optical properties of the grown crystal. The existence of second harmonic generation signals was confirmed by performing Kurtz-Perry powder test and the output power generated by the crystal was comparable with that of potassium dihydrogen phosphate. Thermal properties of the crystal had been investigated using thermogravimetric analysis and differential thermal analysis. The mechanical strength of the crystal was estimated by Vickers hardness test.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Parasuraman, K.S. Murugesan, R. Uthrakumar, S.J. Das and B.M. Boaz, Physica B, 406, 3856 (2011); doi:10.1016/j.physb.2011.07.011.
- K. Selvaraju, R. Valluvan, K. Kirubavathi and S. Kumararaman, Opt. Commun., 269, 230 (2007); doi:10.1016/j.optcom.2006.07.075.
- S.S. Hussaini, N.R. Dhumane, G. Rabbani, P. Karmuse, V.G. Dongre and M.D. Shirsat, Cryst. Res. Technol., 42, 1110 (2007); doi:10.1002/crat.200710929.
- Z.G. Hu, M. Yoshimura, Y. Mori and T. Sasaki, J. Cryst. Growth, 26, 440 (2006).
- S. Singh and B. Lal, J. Cryst. Growth, 312, 301 (2010); doi:10.1016/j.jcrysgro.2009.10.037.
- G.R. Dillip, C.M. Reddy and B.D.P. Raju, J. Miner. Mater. Character. Eng., 10, 1103 (2011).
- J. Ramajothi, S. Dhanuskodi and K. Nagarajan, J. Cryst. Technol., 39, 414 (2004); doi:10.1002/crat.200310204.
- S.R. Balaji, T. Balu and T.R. Rajasekaran, Int. J. Adv. Res. Eng. Technol., 5, 204 (2014).
- K.R. Raj and P. Murugakoothan, Optik–Int. J. Light Electron Optics, 123, 1082 (2012).; doi:10.1016/j.ijleo.2011.07.036.
- V.S. Shankar, R. Siddheswaran, R. Sankar, R. Jayavel and P. Murugakoothan, Curr. Appl. Phys., 9, 1125 (2009); doi:10.1016/j.cap.2008.12.011.
- T. Thaila and S. Kumararaman, Spectrochim. Acta A, 82, 20 (2011); doi:10.1016/j.saa.2011.06.004.
- F.A. Kanda and A.J. King, J. Am. Chem. Soc., 73, 2315 (1951); doi:10.1021/ja01149a119.
- M. Senthil Pandian, U. Charoen In, P. Ramasamy, P. Manyum, M. Lenin and N. Balamurugan, J. Cryst. Growth, 312, 397 (2010); doi:10.1016/j.jcrysgro.2009.10.060.
- B. Kannan, P.R. Seshadri and P. Murugakoothan, Int. J. Chem. Technol. Res., 6, 1168 (2014).
- B. Kannan, P.R. Seshadri, P. Murugakoothan and K. Ilangovan, J. Indian Sci. Technol., 6, 4357 (2013).
- B. Kannan, P.R. Seshadri, P. Murugakoothan and K. Ilangovan, Scholars Res. Lib., 5, 79 (2014).
- R.R. Babu, R. Ramesh, R. Gopalakrishnan, K. Ramamurthi and G. Bhagavannarayana, Spectrochim. Acta A, 76, 470 (2010); doi:10.1016/j.saa.2010.04.001.
- T. Balu, T.R. Rajasekaran and P. Murugakoothan, Curr. Appl. Phys., 9, 435 (2009); doi:10.1016/j.cap.2008.04.005.
- R. Valluvan, K. Selvaraju and S. Kumararaman, J. Mater. Chem. Phys., 97, 81 (2006); doi:10.1016/j.matchemphys.2005.07.063.
- H. Lipson and H. Steeple, Interpretation of X-Ray Powder Diffraction Patterns, edn 5, MacMillan, New York (1970).
- S. Subramanian and M.J. Zaworotko, Coord. Chem. Rev., 137, 357 (1994); doi:10.1016/0010-8545(94)03008-E.
- A.M. Vuagnat and E.L. Wagner, J. Chem. Phys., 26, 77 (1957); doi:10.1063/1.1743268.
- B.R. Lawn and E.R. Fuller, J. Mater. Sci., 10, 2016 (1975); doi:10.1007/BF00557479.
- S. Mukerji and T. Kar, Cryst. Res. Technol., 34, 1323 (1999); doi:10.1002/(SICI)1521-4079(199912)34:10<1323::AID-CRAT1323>3.0.CO;2-4.
- J.M. Linet and S.J. Das, Physica B, 405, 3955 (2010); doi:10.1016/j.physb.2010.06.037.
- N. Vijayan, R. Ramesh Babu, R. Gopalakrishnan, S. Dhanuskodi and P. Ramasamy, J. Cryst. Growth, 236, 407 (2002); doi:10.1016/S0022-0248(01)02207-2.
- S.K. Kurtz and T.T. Perry, J. Appl. Phys., 39, 3798 (1968); doi:10.1063/1.1656857.
References
K. Parasuraman, K.S. Murugesan, R. Uthrakumar, S.J. Das and B.M. Boaz, Physica B, 406, 3856 (2011); doi:10.1016/j.physb.2011.07.011.
K. Selvaraju, R. Valluvan, K. Kirubavathi and S. Kumararaman, Opt. Commun., 269, 230 (2007); doi:10.1016/j.optcom.2006.07.075.
S.S. Hussaini, N.R. Dhumane, G. Rabbani, P. Karmuse, V.G. Dongre and M.D. Shirsat, Cryst. Res. Technol., 42, 1110 (2007); doi:10.1002/crat.200710929.
Z.G. Hu, M. Yoshimura, Y. Mori and T. Sasaki, J. Cryst. Growth, 26, 440 (2006).
S. Singh and B. Lal, J. Cryst. Growth, 312, 301 (2010); doi:10.1016/j.jcrysgro.2009.10.037.
G.R. Dillip, C.M. Reddy and B.D.P. Raju, J. Miner. Mater. Character. Eng., 10, 1103 (2011).
J. Ramajothi, S. Dhanuskodi and K. Nagarajan, J. Cryst. Technol., 39, 414 (2004); doi:10.1002/crat.200310204.
S.R. Balaji, T. Balu and T.R. Rajasekaran, Int. J. Adv. Res. Eng. Technol., 5, 204 (2014).
K.R. Raj and P. Murugakoothan, Optik–Int. J. Light Electron Optics, 123, 1082 (2012).; doi:10.1016/j.ijleo.2011.07.036.
V.S. Shankar, R. Siddheswaran, R. Sankar, R. Jayavel and P. Murugakoothan, Curr. Appl. Phys., 9, 1125 (2009); doi:10.1016/j.cap.2008.12.011.
T. Thaila and S. Kumararaman, Spectrochim. Acta A, 82, 20 (2011); doi:10.1016/j.saa.2011.06.004.
F.A. Kanda and A.J. King, J. Am. Chem. Soc., 73, 2315 (1951); doi:10.1021/ja01149a119.
M. Senthil Pandian, U. Charoen In, P. Ramasamy, P. Manyum, M. Lenin and N. Balamurugan, J. Cryst. Growth, 312, 397 (2010); doi:10.1016/j.jcrysgro.2009.10.060.
B. Kannan, P.R. Seshadri and P. Murugakoothan, Int. J. Chem. Technol. Res., 6, 1168 (2014).
B. Kannan, P.R. Seshadri, P. Murugakoothan and K. Ilangovan, J. Indian Sci. Technol., 6, 4357 (2013).
B. Kannan, P.R. Seshadri, P. Murugakoothan and K. Ilangovan, Scholars Res. Lib., 5, 79 (2014).
R.R. Babu, R. Ramesh, R. Gopalakrishnan, K. Ramamurthi and G. Bhagavannarayana, Spectrochim. Acta A, 76, 470 (2010); doi:10.1016/j.saa.2010.04.001.
T. Balu, T.R. Rajasekaran and P. Murugakoothan, Curr. Appl. Phys., 9, 435 (2009); doi:10.1016/j.cap.2008.04.005.
R. Valluvan, K. Selvaraju and S. Kumararaman, J. Mater. Chem. Phys., 97, 81 (2006); doi:10.1016/j.matchemphys.2005.07.063.
H. Lipson and H. Steeple, Interpretation of X-Ray Powder Diffraction Patterns, edn 5, MacMillan, New York (1970).
S. Subramanian and M.J. Zaworotko, Coord. Chem. Rev., 137, 357 (1994); doi:10.1016/0010-8545(94)03008-E.
A.M. Vuagnat and E.L. Wagner, J. Chem. Phys., 26, 77 (1957); doi:10.1063/1.1743268.
B.R. Lawn and E.R. Fuller, J. Mater. Sci., 10, 2016 (1975); doi:10.1007/BF00557479.
S. Mukerji and T. Kar, Cryst. Res. Technol., 34, 1323 (1999); doi:10.1002/(SICI)1521-4079(199912)34:10<1323::AID-CRAT1323>3.0.CO;2-4.
J.M. Linet and S.J. Das, Physica B, 405, 3955 (2010); doi:10.1016/j.physb.2010.06.037.
N. Vijayan, R. Ramesh Babu, R. Gopalakrishnan, S. Dhanuskodi and P. Ramasamy, J. Cryst. Growth, 236, 407 (2002); doi:10.1016/S0022-0248(01)02207-2.
S.K. Kurtz and T.T. Perry, J. Appl. Phys., 39, 3798 (1968); doi:10.1063/1.1656857.