Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Pilot Study on Electrochemical Oxidation Treatment for Lightly Polluted Water
Corresponding Author(s) : Hao Wang
Asian Journal of Chemistry,
Vol. 27 No. 6 (2015): Vol 27 Issue 6
Abstract
According to the problem of Wenyu River in which C/N was mismatch and biodegradability was poor, a new kind of electro-catalytic oxidation technology was adapted to replace the traditional lightly polluted water quality improvement process and the pilot test was conducted based on the laboratory test. The results showed that the average removal rates of NH3-N, COD, BOD5, total nitrogen were 63.53, 55.91, 44.42, 20.67 and 67.47 %, respectively on the condition of electrolytic voltage of 6 V, plate distance of 1 cm, electrolysis time of 10 min, the handling capacity of 2 m3/h, molar ratio of sodium chloride dosing (NH4 + -N/Cl-) was 1:3 and effluent fully meet the process requirements. In addition, after the electrochemical oxidation process, the biodegradability of effluent was increased from 0.35 to 0.51 or so.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Chang, X.H. Zhang and R. Perfler, Fresenius Environ. Bull, 16, 1082 (2007).
- H. Wang and L. Zhang, Asian J. Chem., 24, 5299 (2012).
- N. Mehrdadi, A. Rahmani, A.A. Azimi and A. Torabian, Asian J. Chem., 21, 5245 (2009).
- C.C. Tanner, J.P.S. Sukias and M.P. Upsdell, Water Res., 32, 3046 (1998); doi:10.1016/S0043-1354(98)00078-5.
- G.D. Ji, T.H. Sun, Q.X. Zhou, X. Sui, S. Chang and P. Li, Ecol. Eng., 18, 459 (2002); doi:10.1016/S0925-8574(01)00106-9.
- H. Wang, D.L. Jiang, Y. Yang and G.P. Cao, Water Sci. Technol., 67, 353 (2013); doi:10.2166/wst.2012.521.
- F. Rivera, A. Warren, C.R. Curds, E. Robles, A. Gutierrez, E. Gallegos and A. Calderon, Water Sci. Technol., 35, 271 (1997); doi:10.1016/S0273-1223(97)00078-4.
- C.J. Richardson and S.S. Qian, Environ. Sci. Technol., 33, 1545 (1999); doi:10.1021/es980924a.
- N. Korboulewsky, R.Y. Wang and V. Baldy, Bioresour. Technol., 105, 9 (2012); doi:10.1016/j.biortech.2011.11.037.
- H. Wang, X.W. He, T.Q. Liu and C.H. Zhang, Fresenius Environ. Bull., 20, 2890 (2011).
- C.L. Yue, J. Chang and Y. Ge, Fresenius Environ. Bull, 17, 992 (2008).
References
J. Chang, X.H. Zhang and R. Perfler, Fresenius Environ. Bull, 16, 1082 (2007).
H. Wang and L. Zhang, Asian J. Chem., 24, 5299 (2012).
N. Mehrdadi, A. Rahmani, A.A. Azimi and A. Torabian, Asian J. Chem., 21, 5245 (2009).
C.C. Tanner, J.P.S. Sukias and M.P. Upsdell, Water Res., 32, 3046 (1998); doi:10.1016/S0043-1354(98)00078-5.
G.D. Ji, T.H. Sun, Q.X. Zhou, X. Sui, S. Chang and P. Li, Ecol. Eng., 18, 459 (2002); doi:10.1016/S0925-8574(01)00106-9.
H. Wang, D.L. Jiang, Y. Yang and G.P. Cao, Water Sci. Technol., 67, 353 (2013); doi:10.2166/wst.2012.521.
F. Rivera, A. Warren, C.R. Curds, E. Robles, A. Gutierrez, E. Gallegos and A. Calderon, Water Sci. Technol., 35, 271 (1997); doi:10.1016/S0273-1223(97)00078-4.
C.J. Richardson and S.S. Qian, Environ. Sci. Technol., 33, 1545 (1999); doi:10.1021/es980924a.
N. Korboulewsky, R.Y. Wang and V. Baldy, Bioresour. Technol., 105, 9 (2012); doi:10.1016/j.biortech.2011.11.037.
H. Wang, X.W. He, T.Q. Liu and C.H. Zhang, Fresenius Environ. Bull., 20, 2890 (2011).
C.L. Yue, J. Chang and Y. Ge, Fresenius Environ. Bull, 17, 992 (2008).