Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
New Insight into Enhanced Photocatalytic Activity of Magnetic MWNTs/TiO2 Nanocomposites
Corresponding Author(s) : Fan Yang
Asian Journal of Chemistry,
Vol. 27 No. 6 (2015): Vol 27 Issue 6
Abstract
Using the carbon nanotubes as carrier and tetrabutyl titanate as precursor, MWNTs/TiO2 nanocomposites are prepared by a sol-gel method,then MWNTs/TiO2/Fe3O4 nanocomposites (magnetic MWNTs/TiO2 nanocomposites) are prepared by a co-precipitation method. The sample is characterized by X-ray powder diffraction, scanning electron microscopy, energy dispersive spectroscopy and transmission electron microscopy. The photocatalytic experiments of MWNTs/TiO2/Fe3O4 nanocomposites are carried out using methyl orange aqueous solution as model pollutant under ultraviolet light. The results indicate that the photocatalytic activity of MWNTs/TiO2/Fe3O4 nanocomposites is the best as the content of MWNTs is about 23 % in MWNTs/TiO2 nanocomposites. The degradation ratio of methyl orange can reach 95 % in 4 h at pH 3. With the help of Fe3O4, MWNTs/TiO2/Fe3O4 nanocomposites can be quickly separated from solution under strong outer magnetic field and used repeatedly.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Henderson, Surf. Sci. Rep., 66, 185 (2011); doi:10.1016/j.surfrep.2011.01.001.
- M. Anpo and P.V. Kamat, Environmentally Benign Photocatalysis-Application of Titanium Dioxide-Based Materials, Springer: New York (2010).
- H. Lin, X. Ji, Q. Chen, Y. Zhou, C.E. Banks and K. Wu, Electrochem. Commun., 11, 1990 (2009); doi:10.1016/j.elecom.2009.08.034.
- Z. Yigit and H. Inan, Water Air Soil Pollut. Focus, 9, 237 (2009); doi:10.1007/s11267-009-9213-2.
- R.H. Baughman, A.A. Zakhidov and W.A. de Heer, Science, 297, 787 (2002); doi:10.1126/science.1060928.
- B. Ahmmad, Y. Kusumoto, S. Somekawa and M. Ikeda, Catal. Commun., 9, 1410 (2008); doi:10.1016/j.catcom.2007.12.003.
- A.P. Toor, A. Verma, C.K. Jotshi, P.K. Bajpai and V. Singh, Dyes Pigments, 68, 53 (2006); doi:10.1016/j.dyepig.2004.12.009.
- S. Qu, F. Huang, S.N. Yu, G. Chen and J.L. Kong, J. Hazard. Mater., 160, 643 (2008); doi:10.1016/j.jhazmat.2008.03.037.
- J.H. Shi, Y.J. Qin, W. Wu, X.L. Li, Z.X. Guo and D.B. Zhu, Carbon, 42, 455 (2004); doi:10.1016/j.carbon.2003.11.016.
- S. Ravindran, S. Chaudhary, B. Colburn, M. Ozkan and C.S. Ozkan, Nano Lett., 3, 447 (2003); doi:10.1021/nl0259683.
- (a) K.V.S. Ranganath and F. Glorius, Catal. Sci. Technol., 1, 13 (2011); doi:10.1039/c0cy00069h; (b) V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara and J.-M. Basset, Chem. Rev., 111, 3036 (2011); doi:10.1021/cr100230z.
- N. Anand, K.H.P. Reddy, T. Satyanarayana, K.S.R. Rao and D.R. Burri, Catal. Sci. Technol, 2, 570 (2012); doi:10.1039/c1cy00341k.
- S. Rostamizadeh, N. Shadjou, M. Azad and N. Jalali, Catal. Commun., 26, 218 (2012); doi:10.1016/j.catcom.2012.05.022.
- D. Rosario-Amorin, M. Gaboyard, R. Clerac, L. Vellutini, S. Nlate and K. Heuze, Chem. Eur. J., 18, 3305 (2012); doi:10.1002/chem.201103147.
- C. Yang, J.J. Wu and Y.L. Hou, Chem. Commun., 47, 5130 (2011); doi:10.1039/c0cc05862a.
- K. Woan, G. Pyrgiotakis and W. Sigmund, Adv. Mater., 21, 2233 (2009); doi:10.1002/adma.200802738.
References
M.A. Henderson, Surf. Sci. Rep., 66, 185 (2011); doi:10.1016/j.surfrep.2011.01.001.
M. Anpo and P.V. Kamat, Environmentally Benign Photocatalysis-Application of Titanium Dioxide-Based Materials, Springer: New York (2010).
H. Lin, X. Ji, Q. Chen, Y. Zhou, C.E. Banks and K. Wu, Electrochem. Commun., 11, 1990 (2009); doi:10.1016/j.elecom.2009.08.034.
Z. Yigit and H. Inan, Water Air Soil Pollut. Focus, 9, 237 (2009); doi:10.1007/s11267-009-9213-2.
R.H. Baughman, A.A. Zakhidov and W.A. de Heer, Science, 297, 787 (2002); doi:10.1126/science.1060928.
B. Ahmmad, Y. Kusumoto, S. Somekawa and M. Ikeda, Catal. Commun., 9, 1410 (2008); doi:10.1016/j.catcom.2007.12.003.
A.P. Toor, A. Verma, C.K. Jotshi, P.K. Bajpai and V. Singh, Dyes Pigments, 68, 53 (2006); doi:10.1016/j.dyepig.2004.12.009.
S. Qu, F. Huang, S.N. Yu, G. Chen and J.L. Kong, J. Hazard. Mater., 160, 643 (2008); doi:10.1016/j.jhazmat.2008.03.037.
J.H. Shi, Y.J. Qin, W. Wu, X.L. Li, Z.X. Guo and D.B. Zhu, Carbon, 42, 455 (2004); doi:10.1016/j.carbon.2003.11.016.
S. Ravindran, S. Chaudhary, B. Colburn, M. Ozkan and C.S. Ozkan, Nano Lett., 3, 447 (2003); doi:10.1021/nl0259683.
(a) K.V.S. Ranganath and F. Glorius, Catal. Sci. Technol., 1, 13 (2011); doi:10.1039/c0cy00069h; (b) V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara and J.-M. Basset, Chem. Rev., 111, 3036 (2011); doi:10.1021/cr100230z.
N. Anand, K.H.P. Reddy, T. Satyanarayana, K.S.R. Rao and D.R. Burri, Catal. Sci. Technol, 2, 570 (2012); doi:10.1039/c1cy00341k.
S. Rostamizadeh, N. Shadjou, M. Azad and N. Jalali, Catal. Commun., 26, 218 (2012); doi:10.1016/j.catcom.2012.05.022.
D. Rosario-Amorin, M. Gaboyard, R. Clerac, L. Vellutini, S. Nlate and K. Heuze, Chem. Eur. J., 18, 3305 (2012); doi:10.1002/chem.201103147.
C. Yang, J.J. Wu and Y.L. Hou, Chem. Commun., 47, 5130 (2011); doi:10.1039/c0cc05862a.
K. Woan, G. Pyrgiotakis and W. Sigmund, Adv. Mater., 21, 2233 (2009); doi:10.1002/adma.200802738.