Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Effect of pH on the Controlled Synthesis of Dysprosium Hydroxide with Morphological Evolution via Hydrothermal Processing
Corresponding Author(s) : J. Junyang
Asian Journal of Chemistry,
Vol. 27 No. 6 (2015): Vol 27 Issue 6
Abstract
A simple hydrothermal method to fabricate dysprosium hydroxide nanomaterial with fully tunable morphologies without any catalysts or templates was presented. Analytical method such as XRD, FESEM, TEM, EDS were employed to characterize the morphology and microstructure of the as-synthesized products. The results reveal that the pH value changed by adjusting ammonia concentration of the solution and dysprosium hydroxide materials with the fibers-sheets-fibers morphology evolution could be obtained. The pH variation is found to play a key role in the morphology evolution. Furthermore, a possible growth mechanism of morphological evolution of the as-prepared dysprosium hydroxide was briefly discussed. Photoluminescence measurement shows that the products have two emission peaks around 490 and 575 nm, which should come from the electron transition from 4F9/2 to 6H15/2 levels and 4F9/2 to 6H13/2 levels, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Mann and G.A. Ozin, Nature, 382, 313 (1996); doi:10.1038/382313a0.
- J.Z. Zhang, Acc. Chem. Res., 30, 423 (1997); doi:10.1021/ar960178j.
- M.A. El-Sayed, Acc. Chem. Res., 37, 326 (2004); doi:10.1021/ar020204f.
- Y.H. Jian, S.K. and Y.Q. Hao, J.-L. Hu and H.-S. Qian, Asian J. Chem., 25, 7927 (2013); doi:10.14233/ajchem.2013.14691.
- M.J. Siegfried and K.-S. Choi, Angew. Chem., 117, 3282 (2005); doi:10.1002/ange.200463018.
- K.S. Kumar and N.V. Jaya, Asian J. Chem., 25, 6095 (2013); doi:10.14233/ajchem.2013.14267.
- C.X. Guo, H.B. Yang, Z.M. Sheng, Z.S. Lu, Q.L. Song and C.M. Li, Angew. Chem. Int. Ed., 49, 3014 (2010); doi:10.1002/anie.200906291.
- E. Nogales, P. Hidalgo, K. Lorenz, B. Méndez, J. Piqueras and E. Alves, Nanotechnology, 22, 285706 (2011); doi:10.1088/0957-4484/22/28/285706.
- F. Sato, Y. Yamada and S. Sato, Chem. Lett., 41, 593 (2012); doi:10.1246/cl.2012.593.
- W. Cheng, M. Steinhart, U. Gösele and R.B. Wehrspohn, J. Mater. Chem., 17, 3493 (2007); doi:10.1039/b709618f.
- C.W. Peng, T.Y. Ke, L. Brohan, C. Richard-Plouet, J.H. Huang, E. Puzenat, H.-T. Chiu and C.-Y. Lee, Chem. Mater., 20, 2426 (2008); doi:10.1021/cm071038e.
- X. Wang and Y.D. Li, Chem. Eur. J., 9, 5627 (2003); doi:10.1002/chem.200304785.
- M. Salavati-Niasari, J. Javidi, F. Davar and A.A. Fazl, J. Alloys Compd., 503, 500 (2010); doi:10.1016/j.jallcom.2010.05.041.
- M. Eichelbaum and K. Rademann, Funct. Mater., 19, 2045 (2009); doi:10.1002/adfm.200801892.
- P. Vladimir and J. Menushenkov, Mang. Magn. Mater., 290, 1274 (2005).
- M. Nishiura and Z. Hou, Bull. Chem. Soc. Jpn., 83, 595 (2010); doi:10.1246/bcsj.20100003.
- J.A. Capobianco, F. Vetrone, J.C. Boyer, A. Speghini and M. Bettinelli, Opt. Mater., 19, 259 (2002); doi:10.1016/S0925-3467(01)00188-4.
- Z.J. Yang, Y.Z. Yang, H. Liang and L. Liu, Mater. Lett., 63, 1774 (2009); doi:10.1016/j.matlet.2009.05.034.
- C.H. Lv, L.Y. Zhang, H.M. Guan and D.C. Zhu, Asian J. Chem., 24, 4133 (2012).
- G. Jia, Y.J. Huang, Y.H. Song, M. Yang, L.H. Zhang and H.P. You, Eur. J. Inorg. Chem., 3721 (2009); doi:10.1002/ejic.200900495.
- W.-W. Zhong, F.-M. Liu and W.-P. Chen, J. Alloys Comp., 531, 59 (2012); doi:10.1016/j.jallcom.2012.01.041.
- L. Zhou, X.B. Zhang, X.B. Zhao, T.J. Zhu and Y.Q. Qin, J. Mater. Sci., 44, 3528 (2009); doi:10.1007/s10853-009-3476-x.
- Z. Zheng, A. Liu, S. Wang, B. Huang, K.W. Wong, X. Zhang, S.K. Hark and W.M. Lau, J. Mater. Chem., 18, 852 (2008); doi:10.1039/b719452h.
- H. Choi, C.-H. Kim, C.-H. Pyun and S.-J. Kim, Luminescence, 82, 25 (1999); doi:10.1016/S0022-2313(99)00018-6.
- G. Wang, Z.D. Wang, Y.X. Zhang, G.T. Fei and L.D. Zhang, Nanotechnology, 15, 1307 (2004); doi:10.1088/0957-4484/15/9/033.
- J.M. Du, Z.M. Liu, Y. Huang, Y.N. Gao, B.X. Han, W.J. Li and G.Y. Yang, J. Cryst. Growth, 280, 126 (2005); doi:10.1016/j.jcrysgro.2005.03.006.
References
S. Mann and G.A. Ozin, Nature, 382, 313 (1996); doi:10.1038/382313a0.
J.Z. Zhang, Acc. Chem. Res., 30, 423 (1997); doi:10.1021/ar960178j.
M.A. El-Sayed, Acc. Chem. Res., 37, 326 (2004); doi:10.1021/ar020204f.
Y.H. Jian, S.K. and Y.Q. Hao, J.-L. Hu and H.-S. Qian, Asian J. Chem., 25, 7927 (2013); doi:10.14233/ajchem.2013.14691.
M.J. Siegfried and K.-S. Choi, Angew. Chem., 117, 3282 (2005); doi:10.1002/ange.200463018.
K.S. Kumar and N.V. Jaya, Asian J. Chem., 25, 6095 (2013); doi:10.14233/ajchem.2013.14267.
C.X. Guo, H.B. Yang, Z.M. Sheng, Z.S. Lu, Q.L. Song and C.M. Li, Angew. Chem. Int. Ed., 49, 3014 (2010); doi:10.1002/anie.200906291.
E. Nogales, P. Hidalgo, K. Lorenz, B. Méndez, J. Piqueras and E. Alves, Nanotechnology, 22, 285706 (2011); doi:10.1088/0957-4484/22/28/285706.
F. Sato, Y. Yamada and S. Sato, Chem. Lett., 41, 593 (2012); doi:10.1246/cl.2012.593.
W. Cheng, M. Steinhart, U. Gösele and R.B. Wehrspohn, J. Mater. Chem., 17, 3493 (2007); doi:10.1039/b709618f.
C.W. Peng, T.Y. Ke, L. Brohan, C. Richard-Plouet, J.H. Huang, E. Puzenat, H.-T. Chiu and C.-Y. Lee, Chem. Mater., 20, 2426 (2008); doi:10.1021/cm071038e.
X. Wang and Y.D. Li, Chem. Eur. J., 9, 5627 (2003); doi:10.1002/chem.200304785.
M. Salavati-Niasari, J. Javidi, F. Davar and A.A. Fazl, J. Alloys Compd., 503, 500 (2010); doi:10.1016/j.jallcom.2010.05.041.
M. Eichelbaum and K. Rademann, Funct. Mater., 19, 2045 (2009); doi:10.1002/adfm.200801892.
P. Vladimir and J. Menushenkov, Mang. Magn. Mater., 290, 1274 (2005).
M. Nishiura and Z. Hou, Bull. Chem. Soc. Jpn., 83, 595 (2010); doi:10.1246/bcsj.20100003.
J.A. Capobianco, F. Vetrone, J.C. Boyer, A. Speghini and M. Bettinelli, Opt. Mater., 19, 259 (2002); doi:10.1016/S0925-3467(01)00188-4.
Z.J. Yang, Y.Z. Yang, H. Liang and L. Liu, Mater. Lett., 63, 1774 (2009); doi:10.1016/j.matlet.2009.05.034.
C.H. Lv, L.Y. Zhang, H.M. Guan and D.C. Zhu, Asian J. Chem., 24, 4133 (2012).
G. Jia, Y.J. Huang, Y.H. Song, M. Yang, L.H. Zhang and H.P. You, Eur. J. Inorg. Chem., 3721 (2009); doi:10.1002/ejic.200900495.
W.-W. Zhong, F.-M. Liu and W.-P. Chen, J. Alloys Comp., 531, 59 (2012); doi:10.1016/j.jallcom.2012.01.041.
L. Zhou, X.B. Zhang, X.B. Zhao, T.J. Zhu and Y.Q. Qin, J. Mater. Sci., 44, 3528 (2009); doi:10.1007/s10853-009-3476-x.
Z. Zheng, A. Liu, S. Wang, B. Huang, K.W. Wong, X. Zhang, S.K. Hark and W.M. Lau, J. Mater. Chem., 18, 852 (2008); doi:10.1039/b719452h.
H. Choi, C.-H. Kim, C.-H. Pyun and S.-J. Kim, Luminescence, 82, 25 (1999); doi:10.1016/S0022-2313(99)00018-6.
G. Wang, Z.D. Wang, Y.X. Zhang, G.T. Fei and L.D. Zhang, Nanotechnology, 15, 1307 (2004); doi:10.1088/0957-4484/15/9/033.
J.M. Du, Z.M. Liu, Y. Huang, Y.N. Gao, B.X. Han, W.J. Li and G.Y. Yang, J. Cryst. Growth, 280, 126 (2005); doi:10.1016/j.jcrysgro.2005.03.006.