Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Decoloration of Azophloxine by Adsorption and Photocatalytic Degradation
Corresponding Author(s) : Wenjie Zhang
Asian Journal of Chemistry,
Vol. 27 No. 6 (2015): Vol 27 Issue 6
Abstract
A combination of adsorption and photocatalytic decoloration was explored in decoloration of azophloxine. The percentage of azophloxine adsorbed on activated carbon increases with increasing concentration of activated carbon in the solution. The maximum adsorption efficiency appears after the solution is stirred for 130 min. 85 min of photocatalytic degradation is needed to remove all the remaining dye molecules from the solution that is pretreated by 130 min of adsorption on activated carbon. Simultaneously application of adsorption and photocatalytic degradation can decolorize the dye in a much shorter time period. About 58.3 % of the initial azophloxine can be removed from the solution after 30 min when 5 mg activated carbon and 25 mg TiO2 are used simultaneously.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.A. Dastgheib, T. Karanfil and W. Cheng, Carbon, 42, 547 (2004); doi:10.1016/j.carbon.2003.12.062.
- W. Buchanan, F. Roddick and N. Porter, Water Res., 42, 3335 (2008); doi:10.1016/j.watres.2008.04.014.
- C. Musikavong, S. Wattanachira, T.F. Marhaba and P. Pavasant, J. Hazard. Mater.,127, 48 (2005); doi:10.1016/j.jhazmat.2005.06.042.
- E.M. Thurman, Organic Geochemistry of Natural Waters, in: Distributors for the U.S. and Canada, M. Nijhoff/Kluwer Academic, Dordrecht/Boston, Hingham, MA, USA (1985).
- M.H.B. Hayes and C.E. Clapp, Soil Sci., 166, 723 (2001); doi:10.1097/00010694-200111000-00002.
- J.A. Leenheer and J.P. Croue, Environ. Sci. Technol., 37, 18A (2003); doi:10.1021/es032333c.
- M.R. Hoffmann, S.T. Martin, W. Choi and W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
- A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Chem., 1, 1 (2000); doi:10.1016/S1389-5567(00)00002-2.
- D.H. Quiñones, A. Rey, P.M. Álvarez, F.J. Beltrán and P.K. Plucinski, Appl. Catal. B, 144, 96 (2014); doi:10.1016/j.apcatb.2013.07.005.
- B.F. Gao, P.S. Yap, T.M. Lim and T.T. Lim, Chem. Eng. J., 171, 1098 (2011); doi:10.1016/j.cej.2011.05.006.
- H. Slimen, A. Houas and J.P. Nogier, J. Photochem. Photobiol.Chem., 221, 13 (2011); doi:10.1016/j.jphotochem.2011.04.013.
- X.J. Wang, Y.F. Liu, Z.H. Hu, Y.J. Chen, W. Liu and G.H. Zhao, J. Hazard. Mater., 169, 1061 (2009); doi:10.1016/j.jhazmat.2009.04.058.
References
S.A. Dastgheib, T. Karanfil and W. Cheng, Carbon, 42, 547 (2004); doi:10.1016/j.carbon.2003.12.062.
W. Buchanan, F. Roddick and N. Porter, Water Res., 42, 3335 (2008); doi:10.1016/j.watres.2008.04.014.
C. Musikavong, S. Wattanachira, T.F. Marhaba and P. Pavasant, J. Hazard. Mater.,127, 48 (2005); doi:10.1016/j.jhazmat.2005.06.042.
E.M. Thurman, Organic Geochemistry of Natural Waters, in: Distributors for the U.S. and Canada, M. Nijhoff/Kluwer Academic, Dordrecht/Boston, Hingham, MA, USA (1985).
M.H.B. Hayes and C.E. Clapp, Soil Sci., 166, 723 (2001); doi:10.1097/00010694-200111000-00002.
J.A. Leenheer and J.P. Croue, Environ. Sci. Technol., 37, 18A (2003); doi:10.1021/es032333c.
M.R. Hoffmann, S.T. Martin, W. Choi and W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Chem., 1, 1 (2000); doi:10.1016/S1389-5567(00)00002-2.
D.H. Quiñones, A. Rey, P.M. Álvarez, F.J. Beltrán and P.K. Plucinski, Appl. Catal. B, 144, 96 (2014); doi:10.1016/j.apcatb.2013.07.005.
B.F. Gao, P.S. Yap, T.M. Lim and T.T. Lim, Chem. Eng. J., 171, 1098 (2011); doi:10.1016/j.cej.2011.05.006.
H. Slimen, A. Houas and J.P. Nogier, J. Photochem. Photobiol.Chem., 221, 13 (2011); doi:10.1016/j.jphotochem.2011.04.013.
X.J. Wang, Y.F. Liu, Z.H. Hu, Y.J. Chen, W. Liu and G.H. Zhao, J. Hazard. Mater., 169, 1061 (2009); doi:10.1016/j.jhazmat.2009.04.058.