Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Electrochemical Removal of Nitrogenous Compounds in Relation to Concentration of Chloride Ions of Micro-Polluted Water
Corresponding Author(s) : Hao Wang
Asian Journal of Chemistry,
Vol. 27 No. 5 (2015): Vol 27 Issue 5
Abstract
Micro-polluted water was treated by electrochemical oxidation method in this work. When the plate distance was 1 cm and electrolysis time was 10 min, NaCl solution was added to the reaction equipment, which made the ratios of concentration of NH4+ and Cl– were 1:1, 1:2 and 1:3, respectively. The removal effects on nitrogenous compounds of the change of the chloride concentration in the water by electrochemical method were investigated. The results revealed that the higher the chloride concentration in the water, the higher the removal rate to nitrogenous compounds, along with the increase of cell voltage, the removal rates of nitrogenous compounds increased too. Considering the power consumption per ton wastewater and other factors, the optimal running conditions of this experiment were the cell voltage 6 V and the ratio of concentration of NH4+ and Cl– were 1:3.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Mehrdadi, A. Rahmani, Asian J. Chem., 21, 5245 (2009).
- H. Wang and L. Zhang, Asian J. Chem., 24, 5299 (2012).
- C.C. Tanner, J.P.S. Sukias and M.P. Upsdell, Water Res., 32, 3046 (1998); doi:10.1016/S0043-1354(98)00078-5.
- Y.F. Lin, S.R. Jing, D.Y. Lee and T.W. Wang, Aquaculture, 209, 169 (2002); doi:10.1016/S0044-8486(01)00801-8.
- J. Chang, X.H. Zhang and R. Perfler, Fresenius Environ. Bull, 16, 1082 (2007).
- G.D. Ji, T.H. Sun, Q.X. Zhou, X. Sui, S. Chang and P. Li, Ecol. Eng., 18, 459 (2002); doi:10.1016/S0925-8574(01)00106-9.
- H. Wang, D.L. Jiang, Y. Yang and G.P. Cao, Water Sci. Technol., 67, 353 (2013); doi:10.2166/wst.2012.521.
- H. Wang, X.W. He, T.Q. Liu and C.H. Zhang, Fresenius Environ. Bull., 20, 2890 (2011).
- F. Rivera, A. Warren, C.R. Curds, E. Robles, A. Gutierrez, E. Gallegos and A. Calderon, Water Sci. Technol., 35, 271 (1997); doi:10.1016/S0273-1223(97)00078-4.
- C.L. Yue, J. Chang and Y. Ge, Fresenius Environ. Bull, 17, 992 (2008).
- N. Korboulewsky, R.Y. Wang and V. Baldy, Bioresour. Technol., 105, 9 (2012); doi:10.1016/j.biortech.2011.11.037.
- C.J. Richardson and S.S. Qian, Environ. Sci. Technol., 33, 1545 (1999); doi:10.1021/es980924a.
References
N. Mehrdadi, A. Rahmani, Asian J. Chem., 21, 5245 (2009).
H. Wang and L. Zhang, Asian J. Chem., 24, 5299 (2012).
C.C. Tanner, J.P.S. Sukias and M.P. Upsdell, Water Res., 32, 3046 (1998); doi:10.1016/S0043-1354(98)00078-5.
Y.F. Lin, S.R. Jing, D.Y. Lee and T.W. Wang, Aquaculture, 209, 169 (2002); doi:10.1016/S0044-8486(01)00801-8.
J. Chang, X.H. Zhang and R. Perfler, Fresenius Environ. Bull, 16, 1082 (2007).
G.D. Ji, T.H. Sun, Q.X. Zhou, X. Sui, S. Chang and P. Li, Ecol. Eng., 18, 459 (2002); doi:10.1016/S0925-8574(01)00106-9.
H. Wang, D.L. Jiang, Y. Yang and G.P. Cao, Water Sci. Technol., 67, 353 (2013); doi:10.2166/wst.2012.521.
H. Wang, X.W. He, T.Q. Liu and C.H. Zhang, Fresenius Environ. Bull., 20, 2890 (2011).
F. Rivera, A. Warren, C.R. Curds, E. Robles, A. Gutierrez, E. Gallegos and A. Calderon, Water Sci. Technol., 35, 271 (1997); doi:10.1016/S0273-1223(97)00078-4.
C.L. Yue, J. Chang and Y. Ge, Fresenius Environ. Bull, 17, 992 (2008).
N. Korboulewsky, R.Y. Wang and V. Baldy, Bioresour. Technol., 105, 9 (2012); doi:10.1016/j.biortech.2011.11.037.
C.J. Richardson and S.S. Qian, Environ. Sci. Technol., 33, 1545 (1999); doi:10.1021/es980924a.