Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Flame Retardancy of Aluminium Dipropylphosphinate in Combination with Melamine Polyphosphate in Polyamide
Corresponding Author(s) : Linsheng Tang
Asian Journal of Chemistry,
Vol. 27 No. 5 (2015): Vol 27 Issue 5
Abstract
In this paper, the flame retardancy of aluminium dipropylphosphinate in combination with melamine polyphosphate in polyamide 6 was studied by the limiting oxygen index measurement, the vertical burning test and the cone calorimeter test and the mechanism was also discussed by residural analysis. It was concluded that there was no synergistic flame retardancy between aluminium dipropylphosphinate and melamine polyphosphate in polyamide 6. The flame retarded polyamide 6 with 15 wt. % aluminium dipropylphosphinate received a V-0 classification in UL 94 tests and had an increased limiting oxygen index value of 30.7 %, while the flame retarded polyamide 6 with 15 wt. % aluminium dipropylphosphinate/melamine polyphosphate ( the weight ratios of aluminium dipropylphosphinate to melamine polyphosphate being 65:35) only achieved a V-2 classification with a limiting oxygen index of 27 % and the mass of the former decreased faster and the peak heat release rate, average heat release rate, average effective heat of combustion and total heat release were higher than the later. In addition, aluminium dipropylphosphinate/melamine polyphosphate had greater influence on the thermal stability of the composites than aluminium dipropylphosphinate and melamine polyphosphate. Fortunately, the combination of aluminium dipropylphosphinate and melamine polyphosphate was more economical because melamine polyphosphate was much cheaper than aluminium dipropylphosphinate. The analysis of the residues obtained in cone calorimeter test showed that aluminium dipropylphosphinate played the role of flame retardancy by gaseous and condensed phase mechanisms, on the one hand, aluminium dipropylphosphinate was decomposed into non-volatile aluminum phosphate and promoted the carbonization of polyamide 6 and the formed intumescent layer resulted in flame retardancy by the barrier effect on heat, air and decomposition products. On the other hand, it was decomposed into volatile phosphorus compounds which brought about flame retardancy by flame inhibition. Although the residues amount of polyamide 6 containing aluminium dipropylphosphinate/melamine polyphosphate was significantly increased, but the resulting loose non-intumescent layer by combining melamine polyphosphate weaken the fire retandancy of the materials.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Hörold, B. Naß, O. Schacker and W. Wanzke, A New Generation of Flame Retarded Polyamides Based on Phosphinates, Proceedings of Flame Retardant, Interscience Publisher, London (2004).
- S. Hoerold, Flame Retarding Thermosetting Compositions, US Patent 6,420459 (2002).
- J.R. Campbell, B. Duffy, J.R. Rude, P. Susarla, M.A. Vallance, G.W. Yaeger and K.P. Zarnoch, WO2005/033179(2005).
- L.S. Tang, Z.G. Yuan, L. Xu, X. Li and Y.Z. Ge, Adv. Mater. Sci. Eng., Article ID 960914 (2013); doi:10.1155/2013/960914.
- E. Jenewein and H.-J. Kleiner, US Patent 6,365071 (2002).
- M. Klatt, B. Leutner, M. Nam and H. Fisch, US Patent 6,503969 (2003).
- E. Schlosser, B. Nass and W. Wanzke, US Patent 6,255371 (2001).
- B. Nass and W. Wanzke, US Patent 6,207736 (2001).
- L.S. Tang, Q.M. Liu, Y.Q. Li and S. Zhang, China Plastics Ind., 39, 110 (2011).
- H.-J. Kleiner, W. Budzinsky and G. Kirsch, US Patent 5,773 556(1998).
- W. He, Z.G. Yuan, Y.J. Liu, Y.C. Wang and L.S. Tang, Asian J. Chem., 26, 8319 (2014); doi:10.14233/ajchem.2014.16917.
- Association of Official Analytical Chemists, Official Methods of Analysis, edn 10, p. 12 (1965).
- U. Braun, B. Schartel, M.A. Fichera and C. Jäger, Polym. Degrad. Stab., 92, 1528 (2007); doi:10.1016/j.polymdegradstab.2007.05.007.
- U. Braun and B. Schartel, Macromol. Mater. Eng., 293, 206 (2008); doi:10.1002/mame.200700330.
- U. Braun, H. Bahr, H. Sturm and B. Schartel, Polym. Adv. Technol., 19, 680 (2008); doi:10.1002/pat.1147.
References
S. Hörold, B. Naß, O. Schacker and W. Wanzke, A New Generation of Flame Retarded Polyamides Based on Phosphinates, Proceedings of Flame Retardant, Interscience Publisher, London (2004).
S. Hoerold, Flame Retarding Thermosetting Compositions, US Patent 6,420459 (2002).
J.R. Campbell, B. Duffy, J.R. Rude, P. Susarla, M.A. Vallance, G.W. Yaeger and K.P. Zarnoch, WO2005/033179(2005).
L.S. Tang, Z.G. Yuan, L. Xu, X. Li and Y.Z. Ge, Adv. Mater. Sci. Eng., Article ID 960914 (2013); doi:10.1155/2013/960914.
E. Jenewein and H.-J. Kleiner, US Patent 6,365071 (2002).
M. Klatt, B. Leutner, M. Nam and H. Fisch, US Patent 6,503969 (2003).
E. Schlosser, B. Nass and W. Wanzke, US Patent 6,255371 (2001).
B. Nass and W. Wanzke, US Patent 6,207736 (2001).
L.S. Tang, Q.M. Liu, Y.Q. Li and S. Zhang, China Plastics Ind., 39, 110 (2011).
H.-J. Kleiner, W. Budzinsky and G. Kirsch, US Patent 5,773 556(1998).
W. He, Z.G. Yuan, Y.J. Liu, Y.C. Wang and L.S. Tang, Asian J. Chem., 26, 8319 (2014); doi:10.14233/ajchem.2014.16917.
Association of Official Analytical Chemists, Official Methods of Analysis, edn 10, p. 12 (1965).
U. Braun, B. Schartel, M.A. Fichera and C. Jäger, Polym. Degrad. Stab., 92, 1528 (2007); doi:10.1016/j.polymdegradstab.2007.05.007.
U. Braun and B. Schartel, Macromol. Mater. Eng., 293, 206 (2008); doi:10.1002/mame.200700330.
U. Braun, H. Bahr, H. Sturm and B. Schartel, Polym. Adv. Technol., 19, 680 (2008); doi:10.1002/pat.1147.