Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Flocculation of Azophloxine Using Polyaluminum Chloride-FeCl3 Under Ultrasonic Treatment
Corresponding Author(s) : Wenjie Zhang
Asian Journal of Chemistry,
Vol. 27 No. 5 (2015): Vol 27 Issue 5
Abstract
A combination of flocculation and ultrasonic treatment was explored in decolouration of azophloxine. FeCl3 and polyaluminum chloride (PAC) were used as a combined flocculating material. Polyaluminum chloride (9 mg) and FeCl3 (3 mg) are selected as the optimized mixture of flocculating reagents in the experiments. Flocculation of azophloxine is fast when using a composite flocculating reagent. The maximum decolouration rate is found after 10 min of treatment with the total decolouration rate of 67.2 %. The solution treated at 40 W of ultrasonic power shows the maximum decolouration rate of 62 %. After 10 min of treatment, the solution containing 30 mg/L of azophloxine shows the highest decolouration rate. The solution containing 20 mg/L of azophloxine shows the lowest decolouration rate.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.R. Hoffmann, S.T. Martin, W. Choi and W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
- A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Chem., 1, 1 (2000); doi:10.1016/S1389-5567(00)00002-2.
- B. Neppolian, Q.L. Wang, H. Yamashita and H. Choi, Appl. Catal. A, 333, 264 (2007); doi:10.1016/j.apcata.2007.09.026.
- T. Saitoh, M. Yamaguchi and M. Hiraide, Water Res., 45, 1879 (2011); doi:10.1016/j.watres.2010.12.009.
- J. Chen, S. Truesdail, F. Lu, G. Zhan, C. Belvin, B. Koopman, S. Farrah and D. Shah, Water Res., 32, 2171 (1998); doi:10.1016/S0043-1354(97)00427-2.
- A. De Martino, M. Iorio, P.D. Prenzler, D. Ryan, H.K. Obied and M. Arienzo, Appl. Clay Sci., 80–81, 154 (2013); doi:10.1016/j.clay.2013.01.014.
- P. Ning, H.-J. Bart, Y. Jiang, A. de Haan and C. Tien, Sep. Purif. Technol., 41, 133 (2005); doi:10.1016/j.seppur.2004.02.004.
- K. Flint, World Pumps, 28 (2009); doi:10.1016/S0262-1762(09)70102-6.
- V.O. Abramov, A.V. Abramova, P.P. Keremetin, M.S. Mullakaev, G.B. Vexler and T.J. Mason, Ultrason. Sonochem., 21, 812 (2014); doi:10.1016/j.ultsonch.2013.08.013.
References
M.R. Hoffmann, S.T. Martin, W. Choi and W. Bahnemann, Chem. Rev., 95, 69 (1995); doi:10.1021/cr00033a004.
A. Fujishima, T.N. Rao and D.A. Tryk, J. Photochem. Photobiol. Chem., 1, 1 (2000); doi:10.1016/S1389-5567(00)00002-2.
B. Neppolian, Q.L. Wang, H. Yamashita and H. Choi, Appl. Catal. A, 333, 264 (2007); doi:10.1016/j.apcata.2007.09.026.
T. Saitoh, M. Yamaguchi and M. Hiraide, Water Res., 45, 1879 (2011); doi:10.1016/j.watres.2010.12.009.
J. Chen, S. Truesdail, F. Lu, G. Zhan, C. Belvin, B. Koopman, S. Farrah and D. Shah, Water Res., 32, 2171 (1998); doi:10.1016/S0043-1354(97)00427-2.
A. De Martino, M. Iorio, P.D. Prenzler, D. Ryan, H.K. Obied and M. Arienzo, Appl. Clay Sci., 80–81, 154 (2013); doi:10.1016/j.clay.2013.01.014.
P. Ning, H.-J. Bart, Y. Jiang, A. de Haan and C. Tien, Sep. Purif. Technol., 41, 133 (2005); doi:10.1016/j.seppur.2004.02.004.
K. Flint, World Pumps, 28 (2009); doi:10.1016/S0262-1762(09)70102-6.
V.O. Abramov, A.V. Abramova, P.P. Keremetin, M.S. Mullakaev, G.B. Vexler and T.J. Mason, Ultrason. Sonochem., 21, 812 (2014); doi:10.1016/j.ultsonch.2013.08.013.