Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Molecular Simulation and Synthesis of Magnetic Molecularly Imprinted Polymer for Recognition of Thymopentin
Corresponding Author(s) : Xiaoling Hu
Asian Journal of Chemistry,
Vol. 27 No. 5 (2015): Vol 27 Issue 5
Abstract
Super paramagnetic molecularly imprinted polymers can be specific recognition towards target molecules and fast separate from solution. In present article, an inexpensive and selective recognition of thymopentin method was introduced. A library of 27 kinds of common functional monomers for preparing molecular imprinted polymer (MIP) was built and their interactions with template thymopentin were calculated using the molecular dynamics software (materials studio 5.5). According to the theoretical calculation results, N,N’-methylene bisacrylamide was selected as functional monomer to form a stable pre-polymerization complex. The Fe3O4-MIPs were prepared by thymopentin as template, Fe3O4-Br as initiator, CuCl as catalyst, N,N,N',N',N''-pentamethyldiethylenetriamine as ligand, EGDMA as cross-linker in ethanol and water through atom transfer radical polymerization at 50 °C. The molecular recognition of thymopentin was analyzed by using molecular modeling software (materials studio 5.5).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Goldstein, M.P. Scheid, E.A. Boyse, D. Schlesinger and J. Van Wauwe, Science, 204, 1309 (1979); doi:10.1126/science.451537.
- G. Goldstein and T.K. Audhya, Surv. Immunol. Res., 4(Suppl. 1), 1 (1985).
- A. Patruno, P. Tosco, E. Borretto, S. Franceschelli, P. Amerio, M. Pesce, S. Guglielmo, P. Campiglia, M.G. Bernengo and R. Fruttero, Nitric Oxide, 27, 143 (2012); doi:10.1016/j.niox.2012.06.002.
- K.H. Hsieh, M.F. Shaio and T.N. Liao, Arch. Dis. Child., 67, 1095 (1992); doi:10.1136/adc.67.9.1095.
- S. Milazzo, E. Ernst, S. Lejeune, K. Boehm and M. Horneber, Cochrane Database Syst. Rev., CD005476 (2011); doi:10.1002/14651858.CD005476.pub3.
- J. Zhan, G. Fang, Z. Yan, M. Pan, C. Liu and S. Wang, Anal. Bioanal. Chem., 405, 6353 (2013); doi:10.1007/s00216-013-7036-5.
- Y.L. Hu, Y.W. Li, Y. Zhang, G.K. Li and Y.Q. Chen, Anal. Bioanal. Chem., 399, 3367 (2011); doi:10.1007/s00216-010-4257-8.
- X.H. Wang, Q.X. Fang, S.P. Liu and L. Chen, Anal. Bioanal. Chem., 404, 1555 (2012); doi:10.1007/s00216-012-6200-7.
- X. Wang, L.Y. Wang, X.W. He, Y.K. Zhang and L.X. Chen, Talanta, 78, 327 (2009); doi:10.1016/j.talanta.2008.11.024.
- Y.Q. Li, X. Li, Y. Li, C. Dong, P. Jin and J. Qi, Biomaterials, 30, 3205 (2009); doi:10.1016/j.biomaterials.2009.03.007.
- D.R. Kryscio, Y. Shi, P.Y. Ren and N.A. Peppas, Ind. Eng. Chem. Res., 50, 13877 (2011); doi:10.1021/ie201858n.
- F. Lanza and B. Sellergren, Anal. Chem., 71, 2092 (1999); doi:10.1021/ac981446p.
- T. Takeuchi, D. Fukuma and J. Matsui, Anal. Chem., 71, 285 (1999); doi:10.1021/ac980858v.
- S. Subrahmanyam, S.A. Piletsky, E.V. Piletska, B. Chen, K. Karim and A.P.F. Turner, Biosens. Bioelectron., 16, 631 (2001); doi:10.1016/S0956-5663(01)00191-9.
- L. Wu, B. Sun, Y. Li and W. Chang, Analyst, 128, 944 (2003); doi:10.1039/b212731h.
- Z. Meng, T. Yamazaki and K. Sode, Biosens. Bioelectron., 20, 1068 (2004); doi:10.1016/j.bios.2004.02.032.
- S. Pardeshi, R. Patrikar, R. Dhodapkar and A. Kumar, J. Mol. Model., 18, 4797 (2012); doi:10.1007/s00894-012-1481-5.
- V.V. Barkaline, Y.V. Douhaya and A. Tsakalof, J. Mol. Model., 19, 359 (2013); doi:10.1007/s00894-012-1561-6.
- E.-R. E. Mojica, J. Mol. Model., 19, 3911 (2013); doi:10.1007/s00894-013-1928-3.
- B. Mu, T.M. Wang, Z.H. Wu, H. Shi, D. Xue and P. Liu, Colloids Surf. A, 375, 163 (2011); doi:10.1016/j.colsurfa.2010.11.081.
- M.S. Khan, P.S. Wate and R.G. Krupadam, J. Mol. Model., 18, 1969 (2012); doi:10.1007/s00894-011-1218-x.
- Y.J. Cui, Y.F. Li, Y. Yang, X. Liu, L. Lei, L. Zhou and F. Pan, J. Biotechnol., 150, 171 (2010); doi:10.1016/j.jbiotec.2010.07.013.
- H.S. Andersson and I.A. Nicholls, Bioorg. Chem., 25, 203 (1997); doi:10.1006/bioo.1997.1067.
- Z.Y. Chen and L. Ye, J. Mol. Recognit., 25, 370 (2012); doi:10.1002/jmr.2161.
- L.G. Chen and B. Li, Food Chem., 141, 23 (2013); doi:10.1016/j.foodchem.2013.02.085.
- Y.K. Lv, L.M. Wang, S.L. Yan, X.-H. Wang and H.-W. Sun, J. Appl. Polym. Sci., 126, 1631 (2012); doi:10.1002/app.36795.
References
G. Goldstein, M.P. Scheid, E.A. Boyse, D. Schlesinger and J. Van Wauwe, Science, 204, 1309 (1979); doi:10.1126/science.451537.
G. Goldstein and T.K. Audhya, Surv. Immunol. Res., 4(Suppl. 1), 1 (1985).
A. Patruno, P. Tosco, E. Borretto, S. Franceschelli, P. Amerio, M. Pesce, S. Guglielmo, P. Campiglia, M.G. Bernengo and R. Fruttero, Nitric Oxide, 27, 143 (2012); doi:10.1016/j.niox.2012.06.002.
K.H. Hsieh, M.F. Shaio and T.N. Liao, Arch. Dis. Child., 67, 1095 (1992); doi:10.1136/adc.67.9.1095.
S. Milazzo, E. Ernst, S. Lejeune, K. Boehm and M. Horneber, Cochrane Database Syst. Rev., CD005476 (2011); doi:10.1002/14651858.CD005476.pub3.
J. Zhan, G. Fang, Z. Yan, M. Pan, C. Liu and S. Wang, Anal. Bioanal. Chem., 405, 6353 (2013); doi:10.1007/s00216-013-7036-5.
Y.L. Hu, Y.W. Li, Y. Zhang, G.K. Li and Y.Q. Chen, Anal. Bioanal. Chem., 399, 3367 (2011); doi:10.1007/s00216-010-4257-8.
X.H. Wang, Q.X. Fang, S.P. Liu and L. Chen, Anal. Bioanal. Chem., 404, 1555 (2012); doi:10.1007/s00216-012-6200-7.
X. Wang, L.Y. Wang, X.W. He, Y.K. Zhang and L.X. Chen, Talanta, 78, 327 (2009); doi:10.1016/j.talanta.2008.11.024.
Y.Q. Li, X. Li, Y. Li, C. Dong, P. Jin and J. Qi, Biomaterials, 30, 3205 (2009); doi:10.1016/j.biomaterials.2009.03.007.
D.R. Kryscio, Y. Shi, P.Y. Ren and N.A. Peppas, Ind. Eng. Chem. Res., 50, 13877 (2011); doi:10.1021/ie201858n.
F. Lanza and B. Sellergren, Anal. Chem., 71, 2092 (1999); doi:10.1021/ac981446p.
T. Takeuchi, D. Fukuma and J. Matsui, Anal. Chem., 71, 285 (1999); doi:10.1021/ac980858v.
S. Subrahmanyam, S.A. Piletsky, E.V. Piletska, B. Chen, K. Karim and A.P.F. Turner, Biosens. Bioelectron., 16, 631 (2001); doi:10.1016/S0956-5663(01)00191-9.
L. Wu, B. Sun, Y. Li and W. Chang, Analyst, 128, 944 (2003); doi:10.1039/b212731h.
Z. Meng, T. Yamazaki and K. Sode, Biosens. Bioelectron., 20, 1068 (2004); doi:10.1016/j.bios.2004.02.032.
S. Pardeshi, R. Patrikar, R. Dhodapkar and A. Kumar, J. Mol. Model., 18, 4797 (2012); doi:10.1007/s00894-012-1481-5.
V.V. Barkaline, Y.V. Douhaya and A. Tsakalof, J. Mol. Model., 19, 359 (2013); doi:10.1007/s00894-012-1561-6.
E.-R. E. Mojica, J. Mol. Model., 19, 3911 (2013); doi:10.1007/s00894-013-1928-3.
B. Mu, T.M. Wang, Z.H. Wu, H. Shi, D. Xue and P. Liu, Colloids Surf. A, 375, 163 (2011); doi:10.1016/j.colsurfa.2010.11.081.
M.S. Khan, P.S. Wate and R.G. Krupadam, J. Mol. Model., 18, 1969 (2012); doi:10.1007/s00894-011-1218-x.
Y.J. Cui, Y.F. Li, Y. Yang, X. Liu, L. Lei, L. Zhou and F. Pan, J. Biotechnol., 150, 171 (2010); doi:10.1016/j.jbiotec.2010.07.013.
H.S. Andersson and I.A. Nicholls, Bioorg. Chem., 25, 203 (1997); doi:10.1006/bioo.1997.1067.
Z.Y. Chen and L. Ye, J. Mol. Recognit., 25, 370 (2012); doi:10.1002/jmr.2161.
L.G. Chen and B. Li, Food Chem., 141, 23 (2013); doi:10.1016/j.foodchem.2013.02.085.
Y.K. Lv, L.M. Wang, S.L. Yan, X.-H. Wang and H.-W. Sun, J. Appl. Polym. Sci., 126, 1631 (2012); doi:10.1002/app.36795.