Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Condensed Phase Species Composition for Aluminum Particles Combustion in Nitrocellulose
Corresponding Author(s) : H.B. Pei
Asian Journal of Chemistry,
Vol. 27 No. 5 (2015): Vol 27 Issue 5
Abstract
The mixtures of nitrocellulose and aluminum with different particle size were ignited in a hermetic steel chamber. The pressures of combustion products were measured and the condensed products were recovered. The morphology and surface atomic distribution of the condensed products was studied with scanning electron microscopy and energy dispersive spectroscopy. The crystal structure and composition of condensed products were analyzed by X-ray diffraction. The results show that the products particles are still spherical shape whose size is roughly identical to that of the initial particles for micro aluminum particles. An analysis of condensed products morphology indicates that the reaction of aluminum proceeds on the particle surface. The amount of reacted aluminum importantly depends on the particles size of aluminum. Non-reacted aluminum, Al2O3 and Al2OC were founded in condensed products. g-Al2O3 is present in all samples and a-Al2O3 is found only in the sample containing nano Al. The mass fraction of Al2OC varied ranged from 2 to 27 % with the Al particles size changed in condensed products.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.E. Olsen and M.W. Beckstead, J. Propul. Power, 12, 662 (1996); doi:10.2514/3.24087.
- E.L. Dreizin, Pror. Energy Combust. Sci., 26, 57 (2000); doi:10.1016/S0360-1285(99)00010-6.
- T. Bazyn, H. Krier and N. Glumac, Proc. Combust. Inst., 31, 2021 (2007); doi:10.1016/j.proci.2006.07.161.
- R.A. Yetter, G.A. Risha and S.F. Son, Proc. Combust. Inst., 32, 1819 (2009); doi:10.1016/j.proci.2008.08.013.
- M.W. Beckstead, Combust. Explos., 41, 533 (2005); doi:10.1007/s10573-005-0067-2.
- P. Bucher, R.A. Yetter, F.L. Dryer, T.P. Parr, D.M. Hanson-Parr and E.P. Viceni, Proc. Combust. Inst., 26, 1899 (1996); doi:10.1016/S0082-0784(96)80012-9.
- P. Bucher, R.A. Yetter, F.L. Dryer, T.P. Parr and D.M. Hanson-Parr, Proc. Combust. Inst., 27, 2421 (1998); doi:10.1016/S0082-0784(98)80094-5.
- M.A. Trunov, M. Schoenitz and E.L. Dreizin, Propellants Explos. Pyrotech., 30, 36 (2005); doi:10.1002/prep.200400083.
- A.V. Fedorov and Y.V. Kharlamova, Combust. Explos., 39, 544 (2003); doi:10.1023/A:1026109801863.
- K. Brandstadt, D.L. Frost and J.A. Kozinski, Proc. Combust. Inst., 32, 1913 (2009); doi:10.1016/j.proci.2008.08.014.
- I.G. Assovskii, A.N. Streletskii and V.I. Kolesnikov-Svinarev, Dokl. Phys. Chem., 405, 235 (2005); doi:10.1007/s10634-005-0068-6.
- S. Rossi, E. Dreizin and C.K. Law, Combust. Sci. Technol., 164, 209 (2001); doi:10.1080/00102200108952170.
- J.M. Lihrmann, T. Zambetakis and M. Daire, J. Am. Ceram. Soc., 72, 1704 (1989); doi:10.1111/j.1151-2916.1989.tb06306.x.
- V. Sarou-kanian, J.C. Rifflet, F. Millot, E. Veron, T. Sauvage and I. Gökalp, Combust. Sci. Technol., 177, 2299 (2005); doi:10.1080/00102200500241107.
- M. Najjari, H. Mnif, H. Samet and N. Masmoudi, J. Phys. D Appl. Phys., 41, 1 (2008); doi:10.1051/epjap:2007176.
- W. Trzcinski, S. Cudziło and L. Szymańczyk, Propellants Explos. Pyrotech, 32, 392 (2007); doi:10.1002/prep.200700201.
- P. Bucher, R.A. Yetter, E.L. Dryer, E. Vicenzi, T. Parr and D. Hansonparr, Combust. Flame, 117, 351 (1999); doi:10.1016/S0010-2180(98)00074-1.
- A. Gromov and V. Vereshchagin, J. Eur. Ceram. Soc., 24, 2879 (2004); doi:10.1016/j.jeurceramsoc.2003.09.020.
- H.B. Pei, Y. Liu and H. Ren, Adv. Mater. Res., 771, 113 (2013); doi:10.4028/www.scientific.net/AMR.771.113.
- I.S. Altman, Combust. Sci. Technol., 160, 221 (2000); doi:10.1080/00102200008935803.
- S.D. Gilev and V.F. Anisichkin, Combust. Explos., 42, 107 (2006); doi:10.1007/s10573-006-0013-y.
- J.E. Crump, J.L. Prentice and K.J. Kraeutle, Combust. Sci. Technol., 1, 205 (1969); doi:10.1080/00102206908952201.
- R. Friedman and A. Macek, Combust. Flame, 6, 9 (1962); doi:10.1016/0010-2180(62)90062-7.
- A. Davis, Combust. Flame, 7, 359 (1963); doi:10.1016/0010-2180(63)90212-8.
- M.A. Trunov, M. Schoenitz, X. Zhu and E.L. Dreizin, Combust. Flame, 140, 310 (2005); doi:10.1016/j.combustflame.2004.10.010.
References
S.E. Olsen and M.W. Beckstead, J. Propul. Power, 12, 662 (1996); doi:10.2514/3.24087.
E.L. Dreizin, Pror. Energy Combust. Sci., 26, 57 (2000); doi:10.1016/S0360-1285(99)00010-6.
T. Bazyn, H. Krier and N. Glumac, Proc. Combust. Inst., 31, 2021 (2007); doi:10.1016/j.proci.2006.07.161.
R.A. Yetter, G.A. Risha and S.F. Son, Proc. Combust. Inst., 32, 1819 (2009); doi:10.1016/j.proci.2008.08.013.
M.W. Beckstead, Combust. Explos., 41, 533 (2005); doi:10.1007/s10573-005-0067-2.
P. Bucher, R.A. Yetter, F.L. Dryer, T.P. Parr, D.M. Hanson-Parr and E.P. Viceni, Proc. Combust. Inst., 26, 1899 (1996); doi:10.1016/S0082-0784(96)80012-9.
P. Bucher, R.A. Yetter, F.L. Dryer, T.P. Parr and D.M. Hanson-Parr, Proc. Combust. Inst., 27, 2421 (1998); doi:10.1016/S0082-0784(98)80094-5.
M.A. Trunov, M. Schoenitz and E.L. Dreizin, Propellants Explos. Pyrotech., 30, 36 (2005); doi:10.1002/prep.200400083.
A.V. Fedorov and Y.V. Kharlamova, Combust. Explos., 39, 544 (2003); doi:10.1023/A:1026109801863.
K. Brandstadt, D.L. Frost and J.A. Kozinski, Proc. Combust. Inst., 32, 1913 (2009); doi:10.1016/j.proci.2008.08.014.
I.G. Assovskii, A.N. Streletskii and V.I. Kolesnikov-Svinarev, Dokl. Phys. Chem., 405, 235 (2005); doi:10.1007/s10634-005-0068-6.
S. Rossi, E. Dreizin and C.K. Law, Combust. Sci. Technol., 164, 209 (2001); doi:10.1080/00102200108952170.
J.M. Lihrmann, T. Zambetakis and M. Daire, J. Am. Ceram. Soc., 72, 1704 (1989); doi:10.1111/j.1151-2916.1989.tb06306.x.
V. Sarou-kanian, J.C. Rifflet, F. Millot, E. Veron, T. Sauvage and I. Gökalp, Combust. Sci. Technol., 177, 2299 (2005); doi:10.1080/00102200500241107.
M. Najjari, H. Mnif, H. Samet and N. Masmoudi, J. Phys. D Appl. Phys., 41, 1 (2008); doi:10.1051/epjap:2007176.
W. Trzcinski, S. Cudziło and L. Szymańczyk, Propellants Explos. Pyrotech, 32, 392 (2007); doi:10.1002/prep.200700201.
P. Bucher, R.A. Yetter, E.L. Dryer, E. Vicenzi, T. Parr and D. Hansonparr, Combust. Flame, 117, 351 (1999); doi:10.1016/S0010-2180(98)00074-1.
A. Gromov and V. Vereshchagin, J. Eur. Ceram. Soc., 24, 2879 (2004); doi:10.1016/j.jeurceramsoc.2003.09.020.
H.B. Pei, Y. Liu and H. Ren, Adv. Mater. Res., 771, 113 (2013); doi:10.4028/www.scientific.net/AMR.771.113.
I.S. Altman, Combust. Sci. Technol., 160, 221 (2000); doi:10.1080/00102200008935803.
S.D. Gilev and V.F. Anisichkin, Combust. Explos., 42, 107 (2006); doi:10.1007/s10573-006-0013-y.
J.E. Crump, J.L. Prentice and K.J. Kraeutle, Combust. Sci. Technol., 1, 205 (1969); doi:10.1080/00102206908952201.
R. Friedman and A. Macek, Combust. Flame, 6, 9 (1962); doi:10.1016/0010-2180(62)90062-7.
A. Davis, Combust. Flame, 7, 359 (1963); doi:10.1016/0010-2180(63)90212-8.
M.A. Trunov, M. Schoenitz, X. Zhu and E.L. Dreizin, Combust. Flame, 140, 310 (2005); doi:10.1016/j.combustflame.2004.10.010.