Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Continuous Production of Barium Titanate Nanopowder by Hydrothermal Synthesis
Corresponding Author(s) : Min Zeng
Asian Journal of Chemistry,
Vol. 27 No. 2 (2015): Vol 27 Issue 2
Abstract
Continuous production of barium titanate fine particles were performed by hydrothermal synthesis process using a green reaction system. The mechanism of particle formation and growth and the feasibility of continuous production of barium titanate particles were also discussed. The separation solution had been reclaimed and recycled as a base solution, after the hydrothermal reaction in this study. This recycled process has been studied at least 9 cycles. The effect of the mineralizer and Ti-precursor material on particle size and its morphology was investigated.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Pithan, D. Hennings and R. Waser, Int. J. Appl. Ceram. Technol., 2, 1 (2005); doi:10.1111/j.1744-7402.2005.02008.x.
- M. Teresa Buscaglia, C. Harnagea, M. Dapiaggi, V. Buscaglia, A. Pignolet and P. Nanni, Chem. Mater., 21, 5058 (2009); doi:10.1021/cm9015047.
- S.G. Kwon, B.H. Park, K. Choi, E.-S. Choi, S. Nam, J.-W. Kim and J.-H. Kim, J. Eur. Ceram. Soc., 26, 1401 (2006); doi:10.1016/j.jeurceramsoc.2005.02.003.
- S. Su, R. Zuo, D. Lv and J. Fu, Powder Technol., 217, 11 (2012); doi:10.1016/j.powtec.2011.09.045.
- J.Q. Qi, L. Sun, Y. Wang, W.P. Chen, P. Du, Y.G. Xu, L.T. Li, C.W. Nan and H.L.W. Chan, Adv. Powder Technol., 22, 401 (2011); doi:10.1016/j.apt.2010.06.007.
- S.K. Tripathy, T. Sahoo, M. Mohapatra, S. Anand and R.P. Das, Mater. Lett., 59, 3543 (2005); doi:10.1016/j.matlet.2005.06.024.
- A. Testino, V. Buscaglia, M.T. Buscaglia, M. Viviani and P. Nanni, Chem. Mater., 17, 5346 (2005); doi:10.1021/cm051119f.
- V. Swaminathan, S.S. Pramana, T.J. White, L. Chen, R. Chukka and R.V. Ramanujan, ACS Appl. Mater. Interfaces, 2, 3037 (2010); doi:10.1021/am1004865.
- M. Zeng, N. Uekawa, T. Kojima and K. Kakegawa, J. Mater. Res., 22, 2631 (2007); doi:10.1557/jmr.2007.0337.
- X.Y. Chen, M.H. Qiao, S.H. Xie, Fan, Zhou and He, J. Am. Chem. Soc., 129, 13305 (2007); doi:10.1021/ja074834u.
- V. Vinothini, P. Singh and M. Balasubramanian, Ceram. Int., 32, 99 (2006); doi:10.1016/j.ceramint.2004.12.012.
- M. Zeng, Appl. Surf. Sci., 257, 6636 (2011); doi:10.1016/j.apsusc.2011.02.090.
- J.O. Eckert, C.C. Hung-Houston, B.L. Gersten, M.M. Lencka and R.E. Riman, J. Am. Ceram. Soc., 79, 2929 (1996); doi:10.1111/j.1151-2916.1996.tb08728.x.
- J. Moon, E. Suvaci, A. Morrone, S.A. Costantino and J.H. Adair, J. Eur. Ceram. Soc., 23, 2153 (2003); doi:10.1016/S0955-2219(03)00016-5.
- B. Sahoo and P.K. Panda, Ceram. Int., 38, 5189 (2012); doi:10.1016/j.ceramint.2012.03.025.
- M.M. Vijatović Petrović, J.D. Bobić, A.M. Radojković, J. Banys and B.D. Stojanović, Ceram. Int., 38, 5347 (2012); doi:10.1016/j.ceramint.2012.03.041.
- N. Uekawa, M. Endo, K. Kakegawa and Y. Sasaki, Phys. Chem. Chem. Phys., 2, 5485 (2000); doi:10.1039/b003611k.
References
C. Pithan, D. Hennings and R. Waser, Int. J. Appl. Ceram. Technol., 2, 1 (2005); doi:10.1111/j.1744-7402.2005.02008.x.
M. Teresa Buscaglia, C. Harnagea, M. Dapiaggi, V. Buscaglia, A. Pignolet and P. Nanni, Chem. Mater., 21, 5058 (2009); doi:10.1021/cm9015047.
S.G. Kwon, B.H. Park, K. Choi, E.-S. Choi, S. Nam, J.-W. Kim and J.-H. Kim, J. Eur. Ceram. Soc., 26, 1401 (2006); doi:10.1016/j.jeurceramsoc.2005.02.003.
S. Su, R. Zuo, D. Lv and J. Fu, Powder Technol., 217, 11 (2012); doi:10.1016/j.powtec.2011.09.045.
J.Q. Qi, L. Sun, Y. Wang, W.P. Chen, P. Du, Y.G. Xu, L.T. Li, C.W. Nan and H.L.W. Chan, Adv. Powder Technol., 22, 401 (2011); doi:10.1016/j.apt.2010.06.007.
S.K. Tripathy, T. Sahoo, M. Mohapatra, S. Anand and R.P. Das, Mater. Lett., 59, 3543 (2005); doi:10.1016/j.matlet.2005.06.024.
A. Testino, V. Buscaglia, M.T. Buscaglia, M. Viviani and P. Nanni, Chem. Mater., 17, 5346 (2005); doi:10.1021/cm051119f.
V. Swaminathan, S.S. Pramana, T.J. White, L. Chen, R. Chukka and R.V. Ramanujan, ACS Appl. Mater. Interfaces, 2, 3037 (2010); doi:10.1021/am1004865.
M. Zeng, N. Uekawa, T. Kojima and K. Kakegawa, J. Mater. Res., 22, 2631 (2007); doi:10.1557/jmr.2007.0337.
X.Y. Chen, M.H. Qiao, S.H. Xie, Fan, Zhou and He, J. Am. Chem. Soc., 129, 13305 (2007); doi:10.1021/ja074834u.
V. Vinothini, P. Singh and M. Balasubramanian, Ceram. Int., 32, 99 (2006); doi:10.1016/j.ceramint.2004.12.012.
M. Zeng, Appl. Surf. Sci., 257, 6636 (2011); doi:10.1016/j.apsusc.2011.02.090.
J.O. Eckert, C.C. Hung-Houston, B.L. Gersten, M.M. Lencka and R.E. Riman, J. Am. Ceram. Soc., 79, 2929 (1996); doi:10.1111/j.1151-2916.1996.tb08728.x.
J. Moon, E. Suvaci, A. Morrone, S.A. Costantino and J.H. Adair, J. Eur. Ceram. Soc., 23, 2153 (2003); doi:10.1016/S0955-2219(03)00016-5.
B. Sahoo and P.K. Panda, Ceram. Int., 38, 5189 (2012); doi:10.1016/j.ceramint.2012.03.025.
M.M. Vijatović Petrović, J.D. Bobić, A.M. Radojković, J. Banys and B.D. Stojanović, Ceram. Int., 38, 5347 (2012); doi:10.1016/j.ceramint.2012.03.041.
N. Uekawa, M. Endo, K. Kakegawa and Y. Sasaki, Phys. Chem. Chem. Phys., 2, 5485 (2000); doi:10.1039/b003611k.